フェルマー数の性質とその素数判定法

中等教育教員養成課程 数学専攻 葛島 昌利

本論文では、フェルマー数と呼ばれる数に対して、その性質と素数性について考察する ことを目的としている。フェルマー数およびフェルマー素数は次のように定義される数で ある。

定義 1. $m \in \mathbb{Z}_{>0}$ に対し, $F_m = 2^{2^m} + 1$ をフェルマー数という.

定義 2. $m \in \mathbb{Z}_{\geq 0}$ に対し, $F_m = 2^{2^m} + 1$ が素数となるとき, F_m をフェルマー素数という. フェルマー数の性質として, 次を示した.

命題 1. フェルマー数は以下の漸化式で表すことができる:

$$F_0 = 3,$$

$$F_m = F_0 F_1 F_2 \cdots F_{m-1} + 2 \ (m \ge 1).$$

命題 2. 相異なる $m, n \in \mathbb{Z}_{>0}$ に対し, F_m と F_n は互いに素である.

定理 2. p を素数としたとき, $p \mid F_m$ ならば, $p \equiv 1 \pmod{2^{m+1}}$ が成り立つ.

命題 1、命題 2 を用いて、素数の無限性を導くことができる。また、定理 2 を用いて、 F_m の素数性が判定できる。具体的には、定理 2 により、 F_m の素因数の候補 p_1, p_2, \ldots, p_n をリストアップすることができる。その中の 1 つ p_k が F_m を割り切るならば、 F_m は合成数となり、当然 p_k が F_m の素因数となる。また、 p_1, p_2, \ldots, p_n のすべてが F_m を割り切らないならば、 F_m が素数であるということが断定できる。

さらに、定理 2 に基づいたプログラムを組み、PARI/GP という計算機を用いて、実際に $5 \le m \le 10$ における F_m に対して、それら素数となるかどうか、またどのように素因数分解されるのかを調べた。そして、何度かプログラムを変えて実験していく中で、定理 2 を改良した次の定理を発見した。

定理 3. $m \in \mathbb{Z}_{\geq 2}$ とする. p を素数としたとき, $p \mid F_m$ ならば, $p \equiv 1 \pmod{2^{m+2}}$ が成り立つ.

残念ながら, F_7 , F_8 , F_9 , F_{10} の素因数分解はできなかった. 定理 2, 定理 3 のさらなる改良. および新たなプログラムの作成は. 今後の研究の課題としたい.