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Abstract

In this paper, we consider the generalized Ramanujan-Nagell equations x2 + (2c −
1)m = cn, x2+(4c)m = (c+1)n, x2+bm = cn with a2+b2 = c2, where a, b, c are positive
integers. We propose conjectures concerning the above three equations, and verify that
these conjectures are true for many cases.

1 Introduction

In 1913, Ramanujan [R] conjectured that the equation x2 + 7 = 2n has only the positive
integer solutions (x, n) = (1, 3), (3, 4), (5, 5), (11, 7), (181, 15). In 1960, Nagell [N] resolved
Ramanujan’s conjecture. Let b and c be fixed relatively prime positive integers greater than
one. Then the generalized Ramanujan-Nagell equation

x2 + bm = cn

in positive integers x,m and n has been studied by a number of authors: (cf. [CD1], [CD2],
[DGX], [Le1], [Le2], [Le3], [LS], [M], [To2] and [YW])

• (Tanahashi [Ta], Toyoizumi [To1]) x2 + 7m = 2n.

• (Alter-Kubota [AK], Tanahashi [Ta]) x2 + 11m = 3n.

• (Bugeaud [Bu]) x2 +Dm = 2n.

• (Yaun-Hu [YH]) x2 +Dm = pn.

• (Terai [Te1], [Te3]) x2 + qm = pn, x2 + qm = cn.

In this paper, we consider the following generalized Ramanujan-Nagell equation:

x2 + (2c− 1)m = cn,

x2 + (4c)m = (c+ 1)n,

x2 + bm = cn with a2 + b2 = c2,

where a, b, c are positive integers. We propose conjectures concerning the above three equa-
tions. Using deep results of exponential Diophantine equations and Baker’s method, we
show that these conjectures are true for several cases. It is expected that for fixed coprime
positive integers b, c, the equation x2 + bm = cn has at most three positive integer solutions
(x,m, n) except for the equations x2 + 7m = 2n and x2 + 2m = 3n which have only the
following solutions, respectively:

x2 + 7m = 2n; (x,m, n) = (1, 1, 3), (3, 1, 4), (5, 1, 5), (11, 1, 7), (181, 1, 15), (13, 3, 9),

x2 + 2m = 3n; (x,m, n) = (1, 1, 1), (1, 3, 2), (5, 1, 3), (7, 5, 4).
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2 Preliminaries

In the proof of our Theorems, we need the following several Propositions concerning the
generalized Fermat equations, the Nagell-Ljunggren equation, the generalized Ramanujan-
Nagell equations and the Primitive Divisor Theorem.

Proposition 2.1 (Bennett-Skinner [BS]). Let n be a positive integer with n ≥ 4. Then the
equation

xn + yn = 2z2

has no solutions in pairwise coprime positive integers (x, y, z) with xyz > 1.

Proposition 2.2 (Ellenberg [E]). Let n be a positive integer with n ≥ 4. Then the equation

x2 + y4 = zn

has no solutions in nonzero pairwise coprime integers x, y, z.

We will introduce here some notation. Let α1 and α2 be real algebraic numbers with
|α1| ≥ 1 and |α2| ≥ 1. We consider the linear form

Λ = b2 logα2 − b1 logα1,

where b1 and b2 are positive integers. As usual, the logarithmic height of an algebraic number
α of degree d is defined as

h(α) =
1

d

log |a0|+
d∑

j=1

logmax
{
1, |α(j)|

} ,

where a0 is the leading coefficient of the minimal polynomial of α (over Z) and (α(j))1≤j≤d

are the conjugates of α in the field of complex numbers. Let A1 and A2 be real numbers
greater than 1 with

logAi ≥ max

{
h(αi),

| logαi|
D

,
1

D

}
for i ∈ {1, 2}, where D is the degree of the number field Q(α1, α2) over Q. Define

b′ =
b1

D logA2
+

b2
D logA1

.

We choose to use a result due to Laurent [La, Corollary 2] with m = 10 and C2 = 25.2.

Proposition 2.3 ([La]). Let Λ be given as above, with α1 > 1 and α2 > 1. Suppose that α1

and α2 are multiplicatively independent. Then

log |Λ| ≥ −25.2D4

(
max

{
log b′ + 0.38,

10

D
, 1

})2

logA1 logA2.

Proposition 2.4 (Ljunggren [Lj]). The equation

xn − 1

x− 1
= y2

has no solutions in integers x, y, n with |x| > 1 and n ≥ 3, except for (n, x, y) = (4, 7, 20),
(5, 3, 11).
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Proposition 2.5 (Bugeaud [Bu]). Let D be an odd positive integer. Then the equation

x2 +Dm = 2n

in positive integers x,m, n has at most one solution (x,m, n), except for the cases D =
7, 23, 2k − 1 (k ≥ 4), where the equation has only the following solutions, respectively.

(i) c = 7; (x,m, n) = (1, 1, 3), (3, 1, 4), (5, 1, 5), (11, 1, 7), (181, 1, 15), (13, 3, 9).

(ii) c = 23; (x,m, n) = (3, 1, 5), (45, 1, 11).

(iii) c = 2k − 1 (k ≥ 4); (x,m, n) = (308, 1, 2), (5458, 1, 3).

Remark. In Theorem 3 of Bugeaud [Bu], it was stated that the exceptional cases are
D = 7, 15. But we point out that the ones are D = 7, 23, 2k − 1 (k ≥ 4). (cf. Theorem 2
of Beukers [Be].)

Proposition 2.6 (Bugeaud [Bu], Yaun-Hu [YH]). Let D > 2 be an integer and let p be an
odd prime not dividing D. If (D, p) ̸= (4, 5), then the equation

x2 +Dm = pn

has at most two positive integer solutions (x,m, n). If the two solutions are (x1,m1, n1) and
(x2,m2, n2), then m1 ̸≡ m2 (mod 2). The equation x2 + 4m = 5n has exactly three positive
integer solutions (x,m, n).

Proposition 2.7 (Le [Le4]). The equation

x2 + 2m = yn, gcd(x, y) = 1, n ≥ 3

has only the positive integer solutions (x, y,m, n) = (5, 3, 1, 3), (7, 3, 5, 4), (11, 5, 2, 3).

Proposition 2.8 (Ivorra [I]). The equation

x2 − 2m = yn, gcd(x, y) = 1, |y| > 1, m ≥ 2, n ≥ 3

has only the integer solutions (x, y,m, n) = (±13,−7, 9, 3), (±71, 17, 7, 3).

Proposition 2.9 (Zsigmondy [Z]). Let A and B be relatively prime integers with A > B ≥ 1.
Let {ak}k≥1 be the sequence defined as

ak = Ak +Bk.

If k > 1, then ak has a prime factor not dividing a1a2 · · · ak−1, whenever (A,B, k) ̸= (2, 1, 3).

3 The equation x2 + (2c− 1)m = cn

In [Te3], the author showed that if 2c − 1 is a prime and 2c − 1 ≡ 3, 5 (mod 8), then the
equation x2 + (2c− 1)m = cn has only the positive integer solution (x,m, n) = (c− 1, 1, 2),
and proposed the following:

Conjecture 3.1. Let c be a positive integer with c ≥ 2. Then the equation

x2 + (2c− 1)m = cn (3.1)

has only the positive integer solution (x,m, n) = (c− 1, 1, 2).
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In this paper, we show that if 2c− 1 = 3pl or 2c− 1 = 5pl, then Conjecture 3.1 is true
without any congruence condition on a prime p:

Theorem 3.1. Suppose that at least one of the following conditions holds:

(C1) 2c− 1 = 3pl with p a prime and l a positive integer,

(C2) 2c− 1 = 5pl with p a prime and l a positive integer.

Then Conjecture 3.1 is true.

3.1 An important lemma

In this section, we show that if αt ≥ 2, then the equation 5m + (2t · 3α − 5)m = 2(5 · 2t−1 ·
3α − 12)N has no positive integer solutions m,N,α, t with mN ≡ 1 (mod 2), which will be
needed in the proof of Theorem 1. (cf. Lemma 1 of Fujita-Terai [FT1])

Lemma 3.1. The equation

5m + (2t · 3α − 5)m = 2(5 · 2t−1 · 3α − 12)N (3.2)

has no solution (m,N,α, t) in positive integers with mN ≡ 1 (mod 2) and αt ≥ 2.

Remark. When α = t = 1, equation (3.2) becomes

5m + 1 = 2 · 3N .

It follows from Proposition 2.4 that the above equation has only the positive integer solution
(m,N) = (1, 1). (cf. Equation (2.2) in Terai [Te3] with c = 3.)

3.2 Proof of Theorem 3.1

(C1) Let (x,m, n) be a solution of (3.1). By Proposition 3.3 of [Te3], we may suppose that
p ̸= 3.

Since 2c− 1 ≡ 0 (mod 3), we have c ≡ 2 (mod 3). Taking (3.1) modulo 3 implies that n
is even, say n = 2N . Then from (3.1), we have

(2c− 1)m = (cN + x)(cN − x).

Since 2c− 1 = 3p and gcd(cN + x, cN − x) = 1, we obtain the following two cases:

(2c− 1)m + 1 = 2cN (3.3)

or
3m + plm = 2cN . (3.4)

In the same way as in the proof of Theorem 1.2 of [Te3], It follows from Proposition 2.4
that equation (3.3) has only the solution (m,N) = (1, 1).

Next we show that equation (3.4) has no solutions m,N . (It is not difficult to show that
m ≥ 4 in (3.4).) It follows from Proposition 2.1 that N is odd. The proof is divided into
two cases (i) m is odd and (ii) m is even.

Case (i). m is odd. Then from (3.4), we show that 3 + pl has an odd prime divisor r.

On the contrary, suppose that 3 + pl = 2t with t ≥ 3. If t is odd, then

(
pl

3

)
=

(
2

3

)
= −1.
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In view of 2c− 1 = 3pl, we have

(
2c

3

)
= 1. From (3.4), this is impossible, since N is odd.

If t is even, then pl ≡ 13 (mod 16) and so c = (3pl + 1)/2 ≡ 4 (mod 8). Thus the left hand

side of (3.4) is divisible by pl + 3 = 2t (: exactly even power of 2), since
3m + plm

3 + pl
is odd.

On the other hand, the right hand side of (3.4) is divisible by exactly odd power of 2. This
leads to a contradiction. Hence we see that c = (3pl + 1)/2 is divisible by an odd prime
divisor r of 3 + pl. Thus we have c = (3pl + 1)/2 ≡ 0 (mod r), i.e.,

−32 + 1 ≡ −23 ≡ 0 (mod r),

which is impossible.
Case (ii). m is even. Then it follows from Proposition 2.2 that if equation (3.1) has

solutions (x,m, n), then m ≡ 2 (mod 4). The left hand side of (3.4) is divisible by an
odd prime divisor r of (p2l + 32)/2 (≡ 1 (mod 4)). From (3.4), we see that r satisfies
c = (3pl + 1)/2 ≡ 0 (mod r), i.e.,

32p2l − 1 ≡ 32 · (−32)− 1 = −2 · 41 ≡ 0 (mod r).

This implies that r = 41 and so
p2l + 32 = 2 · 41α.

The above equation can be reduced to solving the following three elliptic equation according
to α = 3u+ v with v = 0, 1, 2:

Y 2 = X3 − 36, Y 2 = X3 − 36 · 412, Y 2 = X3 − 36 · 414,

where

(X,Y ) = (2 · 41u, 2pl), (2 · 41u+1, 2pl · 41), (2 · 41u+2, 2pl · 412), (3.5)

respectively. By Magma[BoCa], the above three elliptic curves have no integer points (X,Y )
satisfying (3.5), respectively. Hence equation (3.1) has no positive integer solutions (x,m, n).

(C2) Let (x,m, n) be a solution of (3.1). By Proposition 3.3 of [Te3], we may suppose
that p ̸= 5.

Since 2c− 1 ≡ 0 (mod 5), we have c ≡ 3 (mod 5). Taking (3.1) modulo 5 implies that n
is even, say n = 2N . Then from (3.1), we have

(2c− 1)m = (cN + x)(cN − x).

Since 2c− 1 = 5pl and gcd(cN + x, cN − x) = 1, we obtain the following two cases:

(2c− 1)m + 1 = 2cN (3.6)

or
5m + plm = 2cN . (3.7)

In the same way as in the proof of Theorem 1.2 of of [Te3], it follows from Proposition
2.4 that equation (3.6) has only the solution (m,N) = (1, 1).

Next we show that equation (3.7) has no solutions m,N . (It is not difficult to show that
m ≥ 4 in (3.4).) It follows from Proposition 2.1 that N is odd. The proof is divided into
two cases (i) m is odd and (ii) m is even.

Case (i). m is odd. Then from (3.7), we show that 5 + pl has an odd prime divisor r.

On the contrary, suppose that 5 + pl = 2t with t ≥ 3. If t is odd, then

(
pl

5

)
=

(
2

5

)
= −1.
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In view of 2c− 1 = 5pl, we have

(
2c

5

)
= 1. From (3.7), this is impossible, since N is odd.

If t is even, then pl ≡ 11 (mod 16) and so c = (5pl + 1)/2 ≡ 4 (mod 8). Thus the left hand

side of (3.7) is divisible by pl + 5 = 2t (: exactly even power of 2), since
5m + plm

5 + pl
is odd.

On the other hand, the right hand side of (3.7) is divisible by exactly odd power of 2. This
leads to a contradiction. Hence we see that c = (5pl + 1)/2 is divisible by an odd prime
divisor r of 5 + pl. Thus we have c = (5pl + 1)/2 ≡ 0 (mod r), i.e.,

−52 + 1 = −23 · 3 ≡ 0 (mod r).

This implies that r = 3 and so
pl + 5 = 2t · 3α

for some positive integers α, t with αt ≥ 2. Hence, we have equation (3.2). Since both
m and N are odd and αt ≥ 2, we see from Lemma 3.1 that equation (3.2) has no integer
solutions.

Case (ii). m is even. Then it follows from Proposition 2.2 that if equation (3.1) has
solutions (x,m, n), then m ≡ 2 (mod 4). The left hand side of (3.7) is divisible by an
odd prime divisor r of (p2l + 52)/2 (≡ 1 (mod 4)). From (3.7), we see that r satisfies
c = (5pl + 1)/2 ≡ 0 (mod r), i.e.,

52p2l − 1 ≡ 52 · (−52)− 1 = −2 · 313 (mod r).

This implies that r = 313 and so

p2l + 52 = 2 · 313α.

The above equation can be reduced to solving the following three elliptic equation according
to α = 3u+ v with v = 0, 1, 2:

Y 2 = X3 − 100, Y 2 = X3 − 100 · 3132, Y 2 = X3 − 100 · 3134,

where

(X,Y ) = (2 · 313u, 2pl), (2 · 313u+1, 2pl · 313), (2 · 313u+2, 2pl · 3132), (3.8)

respectively. By Magma[BoCa], the above three elliptic curves have no integer points (X,Y )
satisfying (3.8), respectively. Hence equation (3.1) has no positive integer solutions (x,m, n).

4 The equation x2 + (4c)m = (c+ 1)n

As an analogue of Conjecture 3.1, Terai-Nakashiki-Suenaga[TNS1] proposed the following:

Conjecture 4.1. Let c be a positive integer with c ≥ 2. Then the equation

x2 + (4c)m = (c+ 1)n (4.1)

has only the positive integer solution (x,m, n) = (c−1, 1, 2) except for the cases c = 5, 7, 309,
where equation (4.1) has only the following positive integer solutions, respectively:

c = 5; (x,m, n) = (4, 1, 2), (14, 1, 3),

c = 7; (x,m, n) = (6, 1, 2), (22, 1, 3), (104, 3, 5),

c = 309; (x,m, n) = (308, 1, 2), (5458, 1, 3).
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In this section, we verify that this conjecture is true for several cases under some condi-
tions on c. Our main result is the following:

Theorem 4.1. Suppose that at least one of the following conditions is satisfied:

(i) c = 2k, where k is a positive integer.

(ii) c = 2k − 1 (k ≥ 2).

(iii) c = pk − 1, where p is a prime with p ≡ 3 (mod 4).

(iv) c = pk, where p is a prime with p ≡ 3 (mod 8) and k is odd.

(v) c = 2pk, where p is a prime with p ≡ 1 (mod 4).

Then Conjecture 4.1 is true.

4.1 The exponential Diophantine equations

We use the following Lemma 4.1 to show Theorem 4.1 (v).

Lemma 4.1. Let q be an odd integer with q ≥ 3.
(1) If q ≡ 1 (mod 4), then the equation

23m−2 + qm = (2q + 1)n (4.2)

has no positive integer solutions (m,n).
(2) If q ≡ 1 (mod 4), then the equation

23m−2qm + 1 = (2q + 1)n (4.3)

has only the positive integer solution (m,n) = (1, 1).

Proof. (1) It is clear that if m = 1, then equation (4.2) has no solutions. We may thus
suppose that m > 1. Taking (4.2) modulo 4 implies that qm ≡ 3n (mod 4). In view of
q ≡ 1 (mod 4), we see that n is even. Then it follows from Proposition 2.8 that equation
(4.2) has no solutions.
(2) If m = 1, then equation (4.3) has only the solution n = 1. We may thus suppose that
m > 1. Then taking (4.3) modulo 4 implies that 1 ≡ 3n (mod 4). Hence n is even, say
n = 2N . Then

23m−2qm = ((2q + 1)2 − 1)
(2q + 1)2N − 1

(2q + 1)2 − 1
= 2q · (2q + 2)

(2q + 1)2N − 1

(2q + 1)2 − 1
.

Since gcd(q + 1, q) = 1, the above implies that (q + 1) | 23m−2, which is impossible, since
q ≡ 1 (mod 4).

4.2 Proof of Theorem 4.1

(i) Our assertion follows from Proposition 2.7.
(ii) Let (x,m, n) be a solution of equation (4.1). Suppose that our assumptions are all
satisfied.

We first note that that n > m from (4.1). Indeed,

(c+ 1)n = x2 + (4c)m > (4c)m > (c+ 1)m.
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Since x is even, we put x = 2αx1 with α ≥ 1 and x1 odd. Then equation (4.1) leads to

22αx21 + 22mcm = 2kn. (4.4)

We want to show that α = m. If α > m, then equation (4.4) implies that

22m(22α−2mx21 + cm) = 2kn,

so 2m = kn > 2m from k ≥ 2 and n > m, which is impossible. If α < m, then equation
(4.4), as above, implies that 2α = kn, so 2m > 2α = kn > 2m, which is impossible.
Consequently we obtain α = m. Dividing both sides of (4.4) by 22m yields

x21 + (2k − 1)m = 2kn−2m.

Then our assertion easily follows from Proposition 2.5.
(iii) In view of p ≡ 3 (mod 4), we see that m is odd. Then our assertion follows from
Proposition 2.6.
(iv) Let (x,m, n) be a solution of equation (4.1). Suppose that our assumptions are all
satisfied.

Put c = pk with p ≡ 3 (mod 8) and k odd. Since c ≡ 3 (mod 8), we can put c+ 1 = 22d
with d odd. From equation (4.1), x is even, say x = 2αx1 with α ≥ 1 and x1 odd. Then
equation (4.1) leads to

22αx21 + 22mcm = 22ndn. (4.5)

Note that n > m as before. We want to show that α = m. If α > m, then equation (4.5)
implies that n = m, which contradicts the fact that n > m. If α < m, then equation (4.5)
implies that n = α < m, which contradicts the fact that n > m. Hence we obtain α = m,
so

x21 + cm = 22(n−m)dn. (4.6)

Then it follows that n −m = 1, since x21 + cm ≡ 1 + 3m ̸≡ 0 (mod 8). From (4.6), we see
that 1 + 3m ≡ 4 (mod 8), so m is odd. Therefore equation (4.6) can be written as

cm = (2d
m+1

2 + x1)(2d
m+1

2 − x1).

Since two factors of the right hand side of the above are relatively prime and c = pk, we
obtain the following: {

2d
m+1

2 + x1 = cm,

2d
m+1

2 − x1 = 1.

Adding these two equations yields

cm + 1 = 4d
m+1

2 . (4.7)

From definition of d, we have
c+ 1 = 4d.

If m > 1, then it follows from Proposition 2.9 that equation (4.7) has no solutions. Conse-
quently we obtain m = 1, n = 2 and x = c− 1.
(v) Let (x,m, n) be a solution of equation (4.1). Suppose that our assumptions are all
satisfied.

Put q = pk with p ≡ 1 (mod 4) and C = 2q + 1. Then taking equation (4.1) modulo 4
implies that 1 ≡ 3n (mod 4), so n is even, say n = 2N . From (4.1), we have

(23q)m = (CN + x)(CN − x).
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Since gcd(CN + x,CN − x) = 2 and q = pk, we obtain the following two cases:{
CN ± x = 23m−1,

CN ∓ x = 2qm
(4.8)

or {
CN ± x = 23m−1qm,

CN ∓ x = 2.
(4.9)

First consider case (4.8). Adding these two equations yields

23m−2 + qm = (2q + 1)N ,

which has no solutions by Lemma 4.1, (1).
Next consider case (4.9). Adding these two equations yields

23m−2qm + 1 = (2q + 1)N ,

which has only the solution (m,N) = (1, 1) by Lemma 4.1, (2). Hence equation (4.1) has
only the solution (x,m, n) = (c− 1, 1, 2).

5 The equation x2 + bm = cn with a2 + b2 = c2

Let a, b, c be positive integers satisfying a2 + b2 = c2. Such a triple (a, b, c) is called a
Pythagorean triple. If a, b, c are relatively prime, this triple is called primitive. It is well-
known that a primitive Pythagorean triple (a, b, c) with b even can be parameterized by

a = u2 − v2, b = 2uv, c = u2 + v2,

where u and v are positive integers with u > v, gcd(u, v) = 1 and u ̸≡ v (mod 2). In 1956,
Jeśmanowicz [J] proposed the following conjecture on the exponential Diophantine equation
concerning primitive Pythagorean triples:

Conjecture J. Fix u and v as above. The equation

(u2 − v2)x + (2uv)y = (u2 + v2)z

has only the positive integer solution (x, y, z) = (2, 2, 2).

This is a famous unsolved problem in the field of exponential Diophantine equations.
Conjecture J has been verified to be true in many special cases. (cf. [LSS], [M], [MT], [Te2],
[YH])

Related to Conjecture J, the author [Te1] proposed the following:

Conjecture 5.1. Fix u and v as above. The equation

x2 + (u2 − v2)m = (u2 + v2)n (5.1)

has only the positive integer solution (x,m, n) = (2uv, 2, 2).

The author [Te1] proved that if b1 = u2 − v2 and c1 = u2 + v2 are primes such that
(i) b21 +1 = 2c1 and (ii) d1 = 1 or even if b1 ≡ 1 (mod 4), then Conjecture 5.1 is true, where
d1 is the order of a prime divisor of (c1) in the ideal class group of Q(

√
−b1). In [CD1],

[CD2], [Le1], [Le3] and [YW], it was shown that if b1 ̸≡ 1 (mod 8), and b1 or c1 is a prime
power, then Conjecture 5.1 is true. However, other than under such special conditions,
Conjecture 5.1 remains unsolved.

In this section, we propose the following conjecture on the Diophantine equation con-
cerning Pythagorean triples:
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Conjecture 5.2. Fix u and v as above.
(1) If 3u2 − 8uv + 3v2 ̸= −1, then the equation

x2 + (2uv)m = (u2 + v2)n (5.2)

has only the positive integer solutions (x,m, n) = (u− v, 1, 1), (u2 − v2, 2, 2), except for the
case (u, v) = (244, 231), where the equation

x2 + 112728m = 112897n (5.3)

has exactly the three positive integer solutions (x,m, n) = (13, 1, 1), (6175, 2, 2),
(2540161, 3, 3).
(2) If 3u2−8uv+3v2 = −1, then equation (5.2) has exactly the three positive integer solutions
(x,m, n) = (u− v, 1, 1), (u2 − v2, 2, 2), ((u− v)(2u2 + 2v2 + 1), 1, 3).

A simple computer search shows that Conjecture 5.2 is valid for 1 ≤ v < u ≤ 105 and
m ≤ 11, n ≤ 11.

It is worth remarking that equation (5.1) has (at least) one trivial solution, whereas
equation (5.2) has (at least) two trivial solutions except for the cases (u, v) = (244, 231)
and 3u2 − 8uv + 3v2 = −1. As shown in [Bu] and [YH], the equation x2 + 4m = 5n is the
only equation of the form x2 +Dm = pn which has (exactly) three solutions x,m, n, where
D > 2 is a positive integer and p is an odd prime not dividing D. In addition, Corollary
1.1 of [YH] implies that if u2 + v2 is a prime power, then Conjecture 5.2 holds. Our main
result is the following:

Theorem 5.1. Suppose that at least one of the following conditions is satisfied:

(i) u2 + v2 = w2 + 1 for a positive integer w, and any of the following holds:

• uv = 2k2 for an odd integer k;

• uv = 2pt for an odd prime p with p ̸≡ 5 (mod 8) and a positive integer t;

• uv ≡ 10 (mod 12).

(ii) u ∈ {p, p2} and v = 2 for an odd prime p.

(iii) u = 244 and v = 231.

Then Conjecture 5.2 is true.

5.1 The equation x2 + 4u = (u2 + 4)n

The goal of this section is to show the case m = 1 of (ii) in Theorem 5.1.

Lemma 5.1. Let p be an odd prime. If either u = p or u = p2, then the equation

x2 + 4u = (u2 + 4)n (5.4)

has only the positive solution (x, n) = (u− 2, 1).

Proof. It is easy to show that n must be odd. Consider the Pell equation

x2 − (u2 + 4)Y 2 = −4u. (5.5)
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For any solution (x, Y ) to (5.5), there exist a non-negative integer ν and a solution (x0, Y0)
to (5.5) such that

x+ Y
√
u2 + 4 =

(
x0 + Y0

√
u2 + 4

)(u+
√
u2 + 4

2

)2ν

and

0 ≤ |x0| ≤ u
√
u, 0 < Y0 ≤

√
u (5.6)

in view of [St1, Theorem 2], together with the fact that the fundamental solution of the
Pell equation x2 − (u2 + 4)Y 2 = 4 is (u2 + 2+ u

√
u2 + 4)/2. In the case where u = p, since

Theorem 6 in [St1] assures that (5.5) has at most one solution (x0, Y0) with x0 non-negative
satisfying (5.6), and (x0, Y0) = (±(p− 2), 1) satisfies (5.6), it follows that x0 = ±(p− 2) and
Y0 = 1. In the case where u = p2, since the equation x2 − (p4 + 4)Y 2 = −4 has a solution
(x, Y ) = (p2, 1), we see from [St2, Theorem 3] that equation (5.5) has at most two solutions
(x0, Y0) with x0 non-negative satisfying (5.6), and thus (x0, Y0) ∈ {(±(p2 − 2), 1), (p3, p)}.
Since one may consider only the solutions corresponding to the ones of equation (5.4), it
follows from gcd(x, Y ) = 1 that x0 = ±(p2− 2) and Y0 = 1. In any case, therefore, one may
write x = σν , where

σ0 = ±(u− 2), σ1 = ±(u− 2)(u2 + 2)

2
+

u(u2 + 4)

2
, σν+2 = (u2 + 2)σν+1 − σν ,

which implies

x ≡ ±(u− 2) (mod (u2 + 4)). (5.7)

On the other hand, let (x, n) = (x1, n1) be a solution of (5.4). Then, the Diophantine
equation

x2 + 4uy2 = (u2 + 4)n

has a solution (x, y, n) = (x1, 1, n1). After the same procedure as the proof of Proposition
3.1 of [FT2], we see from (5.7) and Theorem 2 in [Le2] that (x, n) = (x1, n1) is a solution of
the equation

x+ 2
√
−u = λ1

(
u− 2 + 2λ2

√
−u
)n

(5.8)

with λ1, λ2 ∈ {±1}. Let α = u− 2+ 2
√
−u and β = u− 2− 2

√
−u. Then, α+ β = 2(u− 2)

and αβ = u2 + 4 are coprime, and

α

β
=

u2 − 8u+ 4 + 4(u− 2)
√
−u

u2 + 4

is clearly not a root of unity in Q(
√
−u). Thus, (α, β) is a Lucas pair. Moreover, since

Un1(α, β) = ±1, the Lucas number Un1(α, β) has no primitive divisor. Since n1 is odd, it
follows from Lemmas 2.5, 2.6 in [FT2] or [BHV] that n1 ∈ {1, 3}. If n1 = 1, then it is
obvious that x1 = u − 2. If n1 = 3, then (5.8) implies that 3u2 − 16u + 12 = ±1, which
yields u = 1, a contradiction. This completes the proof of Proposition 5.1.
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5.2 An application of the theory of linear forms in logarithms

In this section, we first show that the equation qm+22m−2 = (q2+4)n has only one solution
(m,n) = (2, 1) with q an odd integer by the theory of linear forms in two logarithms, and
that the equation 1 + 22m−2qm = (q2 + 4)n has no solutions (m,n) by elementary methods.
These results are used in proving the case m > 1 of Theorem 1.

Lemma 5.2. Let q be an odd integer with q ≥ 3.
(1) The equation

qm + 22m−2 = (q2 + 4)n (5.9)

has only the positive integer solution (m,n) = (2, 1).
(2) The equation

1 + 22m−2qm = (q2 + 4)n (5.10)

has no positive integer solutions (m,n).

Proof. (1) When q = 3, equation (5.9) has only the positive integer solution (m,n) = (2, 1)
from Hadano [Ha]. We may thus suppose that q ≥ 5.

We easily see that if m ≤ 2, then equation (5.9) has only the positive integer solution
(m,n) = (2, 1). From now on, we may suppose that m ≥ 3.

We first want to obtain an upper bound for m. Now consider the following linear form
in two logarithms:

Λ = n log(q2 + 4)−m log q.

Using the inequality log(1 + t) < t for t > 0, we have

0 < Λ = log

(
(q2 + 4)n

qm

)
= log

(
1 +

22m−2

qm

)
<

(
4

q

)m

.

Hence we obtain
log Λ < −m log

q

4
. (5.11)

On the other hand, we use Proposition 2.3 to obtain a lower bound for Λ. It follows from
Proposition 2.3 that

log Λ ≥ −25.2
(
max

{
log b′ + 0.38, 10

})2
log(q2 + 4)(log q), (5.12)

where b′ =
m

log(q2 + 4)
+

n

log q
. We note that q2m > (4q)m > qm+22m−2 = (q2+4)n. Hence

b′ <
3m

log(q2 + 4)
. Put M =

m

log(q2 + 4)
. Combining (5.11) and (5.12) leads to

m log
q

4
< 25.2 (max {log(3M) + 0.38, 10})2 log(q2 + 4)(log q),

so
M < 25.2 (max {log(3M) + 0.38, 10})2 · 7.22,

since log q/ log(q/4) < 7.22 for q ≥ 5. We therefore obtain M < 24403, i.e.,

m < 24403 log(q2 + 4). (5.13)

We next want to obtain a lower bound for m. From (5.9), we see that m > 2n, since
(q2 + 4)m > (qm + 22m−2)2 = (q2 + 4)2n for m ≥ 3.
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Now consider another linear form in two logarithms:

Λ0 = log(q2 + 4)− 2 log q (> 0).

Then

mΛ0 − 2Λ = m(log(q2 + 4)− 2 log q)− 2(n log(q2 + 4)−m log q)

= (m− 2n) log(q2 + 4) ≥ log(q2 + 4),

since m > 2n. Note that

Λ0 = log

(
q2 + 4

q2

)
= log

(
1 +

4

q2

)
<

4

q2
.

Hence we obtain

m ≥ log(q2 + 4)

Λ0
+

2Λ

Λ0
>

log(q2 + 4)

Λ0
>

q2

4
log(q2 + 4). (5.14)

Combining (5.13) and (5.14) yields

q2 < 24402 · 4.

Consequently we conclude that q ≤ 311. Finally, following the strategy described in Section 3
of [B], based on the fact that n/m gives a good approximation to the irrational log q/ log(q2+
4), we checked by MAGMA that in the range 5 ≤ q ≤ 311, equation (5.9) has no solution
(m,n) with 2n < m < 24403 log(q2 + 4).
(2) It is easy to see that if m ≤ 2, then equation (5.10) has no solutions. We may thus
suppose that m > 2. Then taking (5.10) modulo 8 implies that 1 ≡ 5n (mod 8). Hence n is
even, say n = 2N . Then

22m−2qm = ((q2 + 4)2 − 1)
(q2 + 4)2N − 1

(q2 + 4)2 − 1
= (q2 + 3)(q2 + 5)

(q2 + 4)2N − 1

(q2 + 4)2 − 1
. (5.15)

We now distinguish the cases (a) q ̸≡ 0 (mod 3) and (b) q ≡ 0 (mod 3).
(a) q ̸≡ 0 (mod 3). Then gcd(q2 + 3, q) = 1. From (5.15), we have

(q2 + 3) | 22m−2,

which is impossible, since (q2 + 3)/4 is odd (> 1).
(b) q ≡ 0 (mod 3). Then gcd(q2 + 3, q) = 3. If q = 3, then the right hand side of

(5.15) is divisible by 7, which is impossible. We may thus suppose that q > 3. There is
an odd prime factor r > 3 of odd (q2 + 3)/4. Indeed, if q2 + 3 = 4 · 3k with k ≥ 2, then
3(q/3)2 + 1 = 4 · 3k−1, which is impossible. From (5.15), we have q ≡ 0 (mod r), which
contradicts the fact that gcd(q2 + 3, q) = 3.

5.3 Proof of Theorem 5.1, (ii)

We here give a proof of Theorem 5.1, (ii).
(ii) When m = 1, our assertion follows from Lemma 5.1. When m > 1, taking (5.2) modulo
8 implies that n is even, say n = 2N. In view of u ∈ {p, p2} and v = 2, equation (5.2) implies
that either

qm + 22m−2 = (q2 + 4)N or 1 + 22m−2qm = (q2 + 4)N

with q := u. Now our assertion follows from Lemma 5.2.
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