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1 Introduction (Elliptic modular case)

For an even positive integer | € 2Z~, let S;(SL2(Z)) denote the set of all the holomorphic
cusp forms on SL2(Z) of weight [; as usual, the C-vector space S;(SL2(Z)) is endowed with
the Petersson inner product defined by

(6, 61) = / $(7) 31(7) (! dan, (7)
SL2(Z)\b1

for ¢, ¢1 € Si(SLa(Z)), where duy, (7) = y~2 dady is the volume element associated with the
Poincaré metric of the upper-half plane b := {Tr = z+iy | z € R, y € Ryo}. (The imaginary
unit of C is denoted by i.) It is well-known that S;(SL2(Z)) is a finite dimensional C-vector
space whose dimension d; is numerically computable by an explicit dimension formula; in
this article, only its asymptotic behavior d; = &5 +0(1), I — 0o is of relevance (if any). The
important arithmetic information of modular form ¢ € S;(SL2(Z)) is encoded in its Fourier
coefficients {as(n) | n € Zso}, which fits in the g-expansion:

o) =3 agln)q", qi= e,
n=1

The Hecke operators T'(n) (n € Zsq) on S;(SL2(Z)) defined as

T)gl (1) =n't 3 qﬁ(‘”(jb) 0 6 € S(SLy(2)).

ad=n,0<b<d

form a commuting family of self-adjoint operators on the finite dimensional Hilbert space
S;(SL2(Z)). Thus, by linear algebra, we can find an orthogonal basis .%;, which diagonalizes
the operators T'(n) (n € Zsg) simultaneously. By examining the action of the Hecke opera-
tors on ¢ in terms of the Fourier coefficients ag(n), we see that ag(1) # 0 and the eigenvalue
of T'(n) on ¢ € .F is ag(n)/ay(1). Thus, we can choose .%; in such a way that a4(1) = 1 for
all ¢ € .%y; if this condition is met, .%; is said to be Hecke normalized. Set

—0-1) 1/2
el = <(4 o Fm) et

for any non zero element ¢ € .%;; we could say that the numbers Ay(n) resembles to the
Dirichlet characters in that they pssesses the following two properties:

(i) (Asymptotic orthogonality) For any m,n € Z~,

1 - mn)1/4+e
737 Ag(n) Aglm) = G + O (%) (I = o0).

pET
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(ii) (Asymptotic boundedness) For any € > 0,

Ag(n) L (In)S, ¢ € Fi, n € Lo,
™ <. A¢(1) < N5 ¢ e F.

Property (i) is a consequence of Petersson’s formula, which evaluates the quantity on the left-
hand side of the equality in terms of the Bessel function and the Kloosterman sum. Property
(i) follows from the Rankin-Selberg formula, which identifies || f||? (4)~ (=D T'(1)~! with a
positive constant multiple of Ress—;L(¢ X @, s); we then invoke Deligne’s estimate a,(n) =
Oc(n=1/2%¢) and the estimate

I7¢ <. Res, L(¢p x ¢,5) < I, ¢ €.F

due to Hoffstein-Lockhart and Iwaniec.
The Hecke’s L-function of the Hecke eigenform ¢ € .%; is initially defined in terms of
Dirichlet series of its Fourier coefficients or the Euler product:

o0

ag(n) _ _ 1y —
L) =3 =0 = T 0 —aw)p+p 207,
n=1 p:primes

which is absolutely convergent on Re(s) > 0. Owing to the integral representation

oo . dy
Agvs) = Te(s) Lgns) = [~ ol L (Re(s) > 0
with Ic(s) := (2m)7°T'(s), the completed L-function A(¢, s) has a holomorphic continuation

to C satisfying the functional equation

A(p,1—s) = (D)2 A(8, 5).

In particular, L(¢,1/2) = 0 unless [/2 is even. Suppose [/2 is even. The central value
L(¢,1/2) is of some arithmetic interest. Using Petersson’s formula and the approximate
functional equation (Appr FE), one can prove the asymptotic formula

O S LG.12) AP ~1 (1 +oo)

PEF

for their “harmonic” average!, which yields nonvanishing L-values in large weights. Indeed,
@ also can be deduced from an exact formula of the average proved in [11], in which neither
Petersson’s formula nor Apprx FE is used. Since [7¢ < Ag(1) < I (Ve > 0) and #(.%;) <
[, the asymptotic formula is consistent with the Lindel6f hypothesis

(Ve>0) L(,1/2) = O(l%), ¢<€F

in weight aspect, which is a consequence of the generalized Riemanian hypothesis for L(¢, s).
The convexity bound L(¢,1/2) = Oe(l%“) for ¢ € #; is proved by the functional equation
and Stirling’s formula; any bound by O,(1°%€) with the exponent § € (0,1/2) is called a
subconvexity bound. Given the Lindelof hypothesis is still far out of reach, to persue a
smaller subconvexity exponent 6 is a major business in this context. For this, a common
approach is to study the asymptotic for the higher harmonic moments

%ZM@WWWWWPWﬂ&@
PEF

1 A4(1)]? coincides with so called the harmonic weight.

32



with suitably designed mollifier M (¢), whose proof, however, is considerably hard compared
to the proof of #. There is another direction of generalization for & if one only wants to
have nonvanishing central L-values but for more general automorphic L-functions. Namely,
regarding PGL(2) = SO(2,1) as the first layer of the “tower” SO(2,m) (m =1,2,...), we
may seek a formula analogous to # for higher degree Euler products of modular forms on
SO(2,m). This problem was first proposed by the author’s talk in 6-th Fukuoka Number
Theory Symposium and a partial result was reported there. The author thanks the organiz-
ers of the Fukuoka Number Theory Symposium of this year for giving him an occasion to
deliver a follow-up talk on this topic. In this write-up, we state an SO(2,m) counterpart of
the formula # in a complete and refined form omitting all proofs; for full account, we refer
to [22] and [23].

2 Main result I (Siegel modular case)

For details, we refer to [22]. The symplectic group with similitude is defined by GSp, :=
{9€GLy |tg[ % 2] g=vlg) [ %, 2]} with v(g) € GL; the similitude norm of g; Sp,
is the kernel of the rational characer v. Let by :={Z = X +iY € Mp(C) | 'Z =Z, Y > 0}
be the Siegel upper-half space. The space S;(Spy(Z)) of holomorphic Siegel cusp forms
on Spy(Z) of weight | > Z-( is a finite dimensional C-vector space; dimc S;(Spy(Z)) is
explicitly known by Igusa’s dimension formula, which tells us that dimc S;(Spy(Z)) = 13
and that S;(Spy(Z)) = {0} unless I > 10. We endow S;(Spy(Z)) with the inner product
defined by

(] 1) = / B(2)®1(Z) (det Im(2))!dpn, (Z), @, By € 5)(Spo(Z),
Sp2(Z)\b2

where dug,(Z) = det(Y)™3dX dY is the invariant volume element on hy. Let ®(Z) be a
non-zero element of S;(Spy(Z)) with [ € Z>1¢ and

(Z)= Y ae(T) exp(2mitr(TZ)), Z € by
TeQot

its Fourier expansion, where {aq(T) | T € Q*1} is the set of Fourier coefficients of ®, which
is indexed by QT, the set formed by all the positive definite elements in

Q:={T= {;}2“22} la,b,c€Z}.

The unimodular group SLy(Z) acts on the Z-lattice Q as
Q x SLy(Z) > (T,6) — 6T € Q.

From the modularity of ®(Z), one can obtain the modular invariance of the Fourier coeffi-
cients, i.e.,
agp(6T'6) = ag(T), & € SLy(Z), T € Q.

Let D < 0 be a negative fundamental discriminant. Then the set
_J[v3 2 _ _
Qf (D) = {[5 z} c ot ‘ a® — dbe = D, (a,b,c) = 1}

is preserved by the action of SLy(Z), and the orbit space SLy(Z)\Q. (D) is in a natural

prim

bijective correspondence with the ideal class group Cl(Q(+v/D)), which is a finite abelian
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group; the ideal class corresponding to the SLo(Z)-orbit of T € Q;rrim(D) is denoted by [T7].
Let x be a character of C1(Q(v/D)). Define

R(®,D,x) = > ag(T) x([T]).
TESL2(2)\ Qi (D)

Set
o . [R(®,D,x HI* |1 (x*=1),
CL)LD,X = Cl,D <<I>‘CI)> X 9 (X2 # 1)’
where -
T 3-21 3 |ID[\2" 4
Cl,D ‘= 4 (47r) r(i- 9 F(l — 2) X 4 wp hD

with hp := #(C1(Q(vD)) and wp := #(Q(vD),).

Next let us recall some known facts on the spinor L-function, which can be associated
to our ®(Z) only when it is a joint eigenfunction of all the Hecke operators. Fix such a &
for a while. Let A denote the ring of adeles of Q and A¢ the subring of finite adels. Since
GSp,y(A) = GSp,(Q)GSp,(R)’GSpy(Z), from ®(Z), we can form a function ®(g) on the
adelization GSp,(A) in such a way that

D(1gogr) = v(900)/? det(CZ + D)™'®((Ai + D)(Ci+ D) 7Y,
v € GSpy(Q), goo = [& B] € GSp,(R)?, gr € GSpy(2).

Note that @ is invariant by the action of the center of GSpy(A). Let mg denote the auto-
morphic cuspdidal representation of GSpy(A) generated by the ®. It is known that 7 is
irreducible; as such, it is decomposed to a restricted tensor product to irreducible smooth
representations 7, of GSpy(Q)) for p < co and a holomorphic discrete series representa-
tion 7g oo Of weight [ of GSpy(R), ie., 1 = Q,Te. Note I > 10. Let p be a prime;
since @ is right GSp,(Z,)-invariant, the representation 7y, contains a non-zero GSpy(Zp)-
fixed vectors, i.e., 3, is an unramified representation. The unramified representations are
parametrized by Satake parameters, which will be recalled next briefly. Let B be the Borel
subgroup of GSp,, which consists of all the matrices of the form

[0aa] [§1], A€GLe, A€ GLy, B="'B ¢ Maty (2.1)

with A being an upper-triangular unipotent matrix of degree 2. The set of elements of the
form (2.1) with A = 15 (resp. A being diagonal and B = 0) is denoted by U (resp. by T).
Then U is the unipotent radical of B and B = TU is a Levi decomposition. The three
involutions on the complex torus (C*)?

(a,b) — (b,a), (a,b)— (a™,b), (a,b) (a,b7!)

generate a subgroup W C Aut((C*)?) isomorphic to the dihedral group of order 8, which
is a realization of the Weyl group of the root system of type Cy. For any y = (a,b) in the
quotient set (C*)2/W, let I,(y) be the smooth representation of GSp,(Q,) parabolically
induced from a character x, g of the Borel subgroup B(Q))

Xag(diag(ty, t2, Xy 1 Ay )n) = [l TPl PN, (t,12,2) € (@))%, we U(Qy),

where o := ordy(a) and § := ord,(b). Note that y_s; is the modulus character of B(Q,).
Then it is known that the smooth representation I,(y) is of finite length and contains a
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unique unramified irreducible subquotient to be denoted by Wl‘jr(y). Another realization
of m,*(y) is obtained as the smallest subspace of smooth functions on GSpy(Q,) that is
invariant by the right translations by GSp,(Q,) and contains the spherical function wy(y) :

GSp,(Qp) — C (a la Harish-Chandra and Satake) defined by

(5 g) = / Xauspa1(t(kg))dk, g € GSpy(Qy).
GSPQ(Zp)

where t(g) € T(Q,)/T(Z)) is uniquely defined by demanding g € t(¢)U(Q,)GSpy(Z,). The
map y — 7,7 (y) yields a bijection form (C*)2/W onto the set of all the equivalence classes
of smooth irreducible unramified representations of GSp,(Q,). Let Y, denote the set of
y = (a,b) € C? such that wpy(y) is positive type, or equivalently 7" (y) is unitarizable. Set
[Y,] :=Y,,/W. Since the local representation 7 ;, is irreducible, unramified and unitarizable,
there exists a unique point y,(®) = (ap, by) € [Y}], refereed to as the Satake parameter of
® at p, such that 7g j is equivalent to 7, (ap, by). The spinor L-function attached to ® (or
to 7g) is initially defined by the Euler product of degree 4

L(s,mg) := H (1 —app™*) (1 —bpp™*) 71 (1 - a;lp_s)_l(l — bglp_s)_l, Re(s) > 5/2,

p<oo

which is known to be absolutely convergent on the half-plane Re(s) > 5/2 due to the
unitarity of 7¢. The completed L-function for L(s, 7g) is defined as

A(s,mp) =Tc(s+1/2)Tc(s+1—3/2) x L(s,mp).

The basic properties of the spinor L-functions are listed below; (1) and (2) are due to
Andrianov ([1], [2]), and (3) is proved independently by Oda ([16]) and by Evdokimov ([6]).

(1) The completed spinor L-function A(s,ne) admits a meromorphic continuation to C

admitting possible simple poles at s = %, _71, and satisfying the functional equation

A(l - 8,7'((1)) = (—1)ZA(S,7T<1>).

(2) For any T € QF. (D), the Dirichlet series

prim

Zor(s) = Z a@(ZT)

n

n=1

is absolutely convergent on Re(s) > + 1 and equals to

~1py=1
L(s—1+3m)x > L(z([_Tl]LZfl)R((I),D,)\).

e

XeCHQ(VD))

(3) The function A(s,7e) is entire unless [ is even, in which case s = 3 is a pole if
and only if ® is a Saito-Kurokawa lifting SK(f) from a Hecke-eigen cusp form f €

Sa1—2(SL2(Z)); if this is the case,
L(s,ma) = C (s = 5) ¢ (s +3) L(s, f).

Remark. (1) Due to the sign of the functional equation, L (%, 7Tq>) = 0 unless [ is even.
(2) When ® = SK(f) with f € Sy_2(SLa(Z)) being Hecke eigen form, then L(3, f) = 0, so
that

L (5, 7msk(p) = CO0) L' (3, f) -
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Theorem 2.1. Let D be a negative fundamental discriminant and x a character of the ideal
class group CI(Q(v/'D)). There exists a constant C = C(D) > 1, independent of x, such
that as | € 2Z~¢ grows to infinity,

S L01/2 7)1 = 2P D) +0(C)
Peg

with .#; being any orthonormal basis of S;(Spy(Z)), and

L(L,mp) (1 — 1) —log(4n?)) + L'(1,np) ~ (x =1),

PP = {L(Lx) (x #1),

where Y (s) :=T"(s)/T'(s) is the di-gamma function and np is the Kronecker character, and
L(s,x) is the Hecke L-function of the idele class character of Q(v/D)* induced by x.

To describe our second theorem, which is a refinement of Theorem 2.1, we need additional
notation and definitions. Let .7, denote the Hecke algebra for (GSp,(Qy), GSpy(Zy)), i-e.,
the covolution algebra of all those C-valued functions on GSp,(Q)) that is bi-GSp,y(Z,)-
invariant and is compactly supported on GSp,(Q,). The spherical Fourier transform of
[ € 7, is defined by

ﬂm:/’ F@)wn(a b g)dg, g = (a,b) € [Y)
GSp,(Qyp)

with dg being the Haar measure on GSp,(Q,) such that vol(GSpy(Z,)) = 1. The Fourier
inversion formula is known to be described as

ﬂmaﬁmﬂw%wmwﬂw J € A, ge GSpy(Qy),

where dugl(y) is the Plancherel measure, which is a Radon measure on [Y}] supported on
the tempered locus [Y] := U(1)?/W. For y = (a,b) € (C*)?/W and an irreducible smooth
unramified representation of GL2(Q,) of Satake parameter B, = diag(c,c™!) € GL2(C),
set A, := diag(a,b,a=t,b71) € Sp,(C) (= 'PGSp,)) and

L(s,m," (y) X op) := det(1s — (4, @ Bp) p )7,
L(s,my" (y); Ad) := det(1 — pro(Ap)p~*) 71,

where p1g is the 10 dimensional representation of Sp,(C) on its Lie algebra. For a class group
character x € Cl(Q(v/D), viewing it as a character of the idele class group of Q(v/D)*, we
form its automorphic induction AZ(x) = &, AZ,(x) to GLa(A), which is an irreducible
automorphic representation of GL2(A) such that its completed L-function (4 la Jacquet-
Langlands) coincides with the completion of L(s, x). It is known that AZ(x) is not cuspidal
if and only of x = NQ( VD)@ ° X0 for some Hecke character yo of Q*, in which case AI(x) =
xo0 B npxo-

For each | € (2Z)>10, let Sl#(Sp2(Z)) := SK(S9,_2(SL2(Z)) be the image of the Saito-
Kurokawa lifting, which is a linear subspace of S;(Spy(Z)) stable under the action of Hecke
operators. Fix an orthonormal basis 9’[# of Sl# (Spy(Z)) and extend it to an orthonormal
basis .Z; of the total space S;(Spo(Z)). Set F) := F — yl#. For a finite set S of prime
numbers, set [Ys] :=[[,c5[Y,] and Y9 := Hpes[YpO].
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Theorem 2.2. Let D < 0 be a negative fundamental discriminant and S a finite set of odd
prime numbers prime to D. For any o € C([Ys]), as | € 2Z~q grows to infinity,

e Za(ys@))L(l/z%)ngDw1_>2A§<Q)X{L<an> )

3(x=1
(log )= =3, L(1,x) (x#1),

where ys(®) = {yp(P)}pes € [Vs] is the set of Satake parameter of ®, and A% is a Radon
measure on [Ys] supported on [Y] such that

H Cp 1Cp )Cp( ) / aur(x) L(;’ p ( ) X ‘AI X p)L (2’ ;r(y)) dM (y)
) [Y,9] P L(L ﬂ-ur(y)’ Ad) P .
Corollary 2.3. Let D < 0 be a negative fundamental discriminant, and S be a finite set of
odd prime numbers prime to D. Let U be a measurable subset of [YO] such that p£'(S) > 0
and ugl(aU) = 0. Then, there exists ly € Z~q with the following property: For anyl € 27+,
there exists ® € 9’)’ such that

L(1/2,79) L(1/2, 76 X np) > 0, yg(®) € U.

To prove these results, we invoke the following deep results on automorphic represen-
tations of GSpy(A): Suppose ® € S;(Spy(Z)) is a joint Hecke eigenform which is not a
Saito-Kurokawa lift from cusp forms on SLy(Z). Then,

¢ (The Ramanujan property of ®, conjectured by Kurokawa and proved by Weis-
sauer [25]) The automorphic represenation g of GSpy(A) is tempered, i.e., the Satake
parameter y,(®) lies in [Ypo] for all p < oo.

e (The existence of transfer to GL4 due to Pitale-Saha-Schmidt [17]) There exists
an irreducible cuspidal automorphic representation II of GL4(A) of symplectic type
such that L(s,II) = L(s,m3). As a consequence of this, invoking a result by Lapid,
they deduce the non-negativity L (%, 7Tq>) > 0, which is what we need.

¢ (Refined form of Boechrere’s conjecture due to Liu [12], furthur computed by
Dickson-Pitale-Saha-Schmidt [5], and proved by Furusawa and Morimoto [7], [8]) For
any fundamental discriminant D < 0 and for any character y of Cl(Q(v/D)),

|R((I)7D7X_1)‘2 _ 24l_47'('21+1w2 ’D‘l_l L(1/277T® X AI(X))
i)z o@-2r " L(1, 74, Ad)

2.1 Related works

o Kowalski-Saha-Tsimerman [10] obtained (among other things) an asymptotic formula
of > gpez L(s,ma) wqu_ 41 with s being in the convergent range of the Euler product.

Note that Q(v/—4) = Q(i) has class number 1 so that x = 1. Their tool is Kitaoka’s
formula (a Siegel modular analogue of Petersson’s formula) and Sugano’s formula of
spherical Bessel functions over Q,.

e Blomer [3] proved the formula

> L(1/2,7s) wigq = 2L(1,1-4)(log ] —log(47?)) + L'(1,n-4) + O™ ),
Py
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for average of central L-values. This result is consistent with our result for D = —4.
More strikingly, an asymptotic formula of the second moment

Yo IL(/2me)Pwl gy (= o0)
degy

is elaborated.

e Waibel [24], employing the method by [3], proved a second moment formula for the
central spinor L-values of Siegel cusp forms with fixed even weight and varying square
free levels of Siegel parabolic type.

3 Main results II (for forms on type IV symmetric domain)

For details of this section, we refer to [23]. Given a Z-module .# and a commutative ring
R, we use the notation .#Zp to denote the R-module .Z ®z R.

3.1 Notation and preliminaries

Let m € Zs3 be an odd integer. Let £ = Z™*2 be a lattice of signature (2—, m+) (=free
Z-module endowed with a quadratic form @ : £ — Z whose scalar extension to .2 is
non-degenerate) satisfying

(A) Z is maximal even-integral, i.e., Q(.Z) C 2Z and .Z is maximal among all Z-lattices
in £p with this property.

(B) £ admits the orthogonal splitting
L =(e1,e)z® A, A = {c0,e0)z D%

with <6j,5;->z hyperbolic planes. Thus, % is positive definite and maximal even-
integral.

Let (X,Y) :=3(Q(X +Y) —Q(X) — Q(Y)) (X,Y € %) be the associated bi-linear form;
then (%, %) C Z due to (A). Let O := Oy be the orthogonal group (scheme over 7Z)
defined by .Z. Set Z := £ r + i1~ a complex domain in £ ¢ = C™, where Q™ :={Y €
Q] (& eo0 —e) <0} is the connected component containing the point 3¢/i := €9 — ¢, of the
cone Q:={Y € Lr| QY] <0} The Lie group G := O(R)? = SOy(2,m) acts on Z
holomorphically in the way described as follows. For (3,9) € 2 x G, define ¢(3) € 2 and
J(g,3) € C* by the relation

gPG)=J(g,3) P(9(3)),

where
PG) = (—27'Q)) e1 +3+¢) € L = CmH2,

Then GXZ 3> (g,2) — g(3) € Z is the action of G on Z such that 3 — ¢(3) is a holomorphic
automorphism of . Actually, this action is extended to an action of the disconnected group
O(R) (with 4-connected component) on .2 g+i€2; let O(Q)* denote the element of v € O(Q)
which preserves the connected component 2 of Z; g +i€2. The function J(g, 3) satisfies the
automorphy condition J(gg',3) = J(g,9'(3)) J(¢',3) forall g,¢’ € G and 3 € 2. The complex
manifold Z is endowed with the G-invariant Kihler 2-form wg(3) := 27100 Q[Im(3)], which
yields the Bergmann metric of 2. Let Koo := Stabg(30); then, Ko = SO(2) x SO(m) is a
maximal compact subgroup of G and we have a G-isomorphism

G/Koo§@, gKoo’_>g<30>'
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For a prime p, let K7 denote the kernel of the natural group homomorphism O(Z,) —
Awt (L | Zy,), where £V = {X € Ly | (£, X) C Z} is the dual lattice of .Z; O(Z,) =
{9 € O(Qy) | 9(£2,) = £2,} is a maximal compact subgroup of O(Q,) and K3 is an open
subgroup O(Zy). Set Ki := [[, K. Let [ € Zso. A function F : Z x O(A¢) — C is called
a holomorphic cusp form of weight [ if it satisfies the conditions:

(1) F(7<3>7’79fk) = J(’y,j)lF(_g) for all v € O(Q)Jrv 3€ 7 and gr € O(Af)7 ke K;
(ii) For any gr € O(Ag), the function 3 — F(3,gf) on Z is holomorphic.
(i) |Q[Im(3)]|/2F (3, g¢) is bounded on Z x O(Ag).

Let &; denote the space of all the holomorphic cusp forms of weight [; then &; is finite
dimensional, and dim¢c &; < "™ (I — 4o00) by the Hirzebruch-Mumford proportionality
principle. We endow &; with the inner product:

(F|FL) = / F 5, 90)F1 G290 duo(3) dr,
O(Q)+\(2x0(Ar))

where dgu(3) is the Kaehler volume element on 2 and dgr is a (unique) Haar measure such
that vol(K§) = 1. Moreover, the space &; has a natural action of the Hecke algebra fff‘ for
all p, where %’;ﬁ is defined to be the center of the Hecke algebra of the pair (O(Q,), K}). For
g¢ € O(Ag), there exists a Z-lattice £ (g¢) C £ g such that for any F' € &;, the function
3 — F(3,9¢) is given by the Fourier expansion

FG,g)= >, ar(ge; n)exp(2mi(n,3)), 3 €2,
n€L1(9e)N(—Q7)

where ap(gr; 1) € C will be refereed to as the Fourier coefficients.
From now on, we fix § € £ g such that

(a) (signature condition) & € i 2, or explicitly Q[¢] < 0 and (&, 30/i) < 0.
(b) (primitivity) £ is a primitive vector of the lattice 2.
(¢) (maximality) ,2”15 =% N &L is a maximal even-lattice in the quadratic space €.
Now define Q-algebraic subgroups of O as
Oy := Stabp(e1,¢}), OFf :=Stabp(¢), 0% :=0fNO;.

By the signature conditions, we have O1(R) = O(1,m — 1), O¢(R) = O(1,m) and Of(R) =
O(m—1). In particular, O} (R) is compact. Let K$™* := 1L, K?; with Kikp = {u e 0%(Z)
u(X) - X € Zf, (VX € (£f4)")}, and

f: O (Q@)\OS(Ag) /KS" — C

be a joint eigenfunction of (jffpﬁ for all p, where (e%”fp)—k denote the center of the Hecke
algebra of (Of (Qp), Kf*p) For F' € &; with the Fourier coefficients ar(gs;7n), define

"~ f)
a{*ﬂ(f) = :uf_l Jz::l 65(;) aF(uj; é‘)7



where u; € O?(Af) (1 < j < h) are such that

O5(Q)\Of(A¢)/KS" = {a1,...,a,} and

h
ec(i) = #OF@ N K ), e =3 ee(i)™

Next we introduce an Eisenstein series on O% (A). Let P¢ be the maximal parabolic subgroup
of Of stabilizing the vector e; up to constant. Then

PE(A) = {[t o t;] € OS(A) |t € AX, ho € oﬁ(A)}.

Let Kf,* =K;nN 0%(Qy) for p < oo, and K& be a maximal compact subgroup of O¢(R)

stabilizing ¢ up to constants; set K&* := Hp Kg* Kgo By means of the Iwasawa decomposi—

tion O%(A) = P{(A) K¢, we define a function f(*) on O%(A) as f®) (h) := f(ho) \t\ E for
t % %

h= [ ho *1] € P5(A) and k € K. Then the Eisenstein series relevant to our purpose is
—

ES(f,sih) = > fOyh), heON(n),
yePE(Q)\O5(Q)

which is convergent on Re(s) > (m — 1)/2. By Murase-Sugano [13], the Euler product
L(f,s) = I1, Lp(f,s) (Re(s) > (m —1)/2) is defined in such a way that the local p-factor

L,(f,s) when (.i”f)zp = (.iﬂf)z coincides with the common definition 4 la Langlands;
then it is proved that L(f,s) has a meromorphlc continuation to C in such a way that the
completed L-function A(f,s) := ( ) x L(f,s) with the gamma-factor being

(m—1)/2

[I Tcls—i+m—1)/2) {#(L)Y /L)1
j=1

satisfies the functional equation A(f,1 —s) = A(f,s) and admits possible poles only at
s = mT_l —j (4 € ]0,m —2]); in particular, A(f,s) has a possible simple pole at s = 1 when
m is odd. From this result, they deduced the meromorphic continuation and the functional

equation EO5 (f,—s;h) = EO'g (f, s;h) for the normalized Eisenstein series
QS (f,5:h) i= (S, —s) B (f,5:h). (3.1)

3.1.1 Integral representation of L-function

Let F' € G; be a joint eigenfunction of the Hecke algebras Jzﬁf for all p < co. Let L(F,s) =
[1)<oo Lp(F' s) be the Euler product defined by Murase-Sugano ([13]). Set

(m-1)/2
Poi(s) =Te(s—m/2+0) [[ Te(s+m/2-5) @7 #(L"/ )"

and A(F, s) := L'y (s) L(F,s), the completed L-function of F. Let F© denote the function
of O(A) defined by FO(googs) = J(goo,30) " F(go0(30), 9¢) for goo € O(R) and gr € O(Ag).
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The following identity is partly due to Andrianov ([1], [2]) and Sugano ([19], [20]) and is
stated in this form in [15]:

/ BE (s = 1/20) FOE) dh = G ab (@ A(Fs) - (Res) > 0),
O (Q\O%(A)

where b5, € O1(R) is an element such that bgo(eé\;go) = 1Q(¢)|~1/2%¢, and Cf is a positive

constant which can be explicitly described once the normalization of Haar measure on O%(A)
is fixed. Suppose a{;(ﬁ ) # 0 for some £ and f; then A(F,s) has a meromorphic continuation
to C satisfying the functional equation A(F,1 — s) = A(F,s) with possible poles only at
s=m/2—j (0 <j<m—1);in particular, L(F,s) is regular at s = 1/2. When m is odd,
the center of the functional equation s = 1/2 is a (unique) critical point of the L-function
L(F,s).

3.2 Statement of the main result

Let the notation and the assumptions be as before; in particular £ satisfies three conditions
(a), (b) and (c). Let % be an irreducible Of(Af)—subrepresentation of LQ(Of(Q)\Of(Af))
such that the space of Kﬁ*—ﬁxed vectors % (Kﬁ*) in % is not zero.

Lemma 3.1. Suppose 26 € 4.
(1) For each prime p, let rf, be the reflection of £ q, with respect to . Then,

(r/lf,)p<Oo € hf K] for some hf € Of(Af).

(2) There exists an involutive operator T§ on %(Kﬁ*) such that

TE(F)(h) = f(hhg), few(K)

for any h% € Oﬁ(Af) as in (1).
(3) The involution ng commutes with all the Hecke operators from (c%ﬂfp)*' (p < 00).

There exists an orthonormal basis %’(?/,Kg*) of %(Kg*) which diagonalizes the action
of (35" (p < 00), 7).

Set BU = {f € B KS) | 75(f) = £f}. For F € &, and f € %(K$"), we define?

(4m\/—2Q[E]) "% (21 — 512 af (€)

AL =
r(®) AT ’

where

2
|F (3, 9¢)|” duo (5) dge.

1 ()
1917 =gt S0 DR =
¢ ; e¢(4) 0@+ \(ZxO(4y))
Theorem 3.2. Suppose & satisfies 26 € £ as well as conditions (a), (b) and (c). Let
e € {£1} be such that #(%5,) # @. Then, there exists C' > 1 such that, as [ — oo with
(_1)l =6,

() 1 B * )
[ > #(F) > L(F1/2) |ALE) = B (&) L% . 5)[iy + O(CT,

Feg fe#,

2The quantity AL (¢) should be viewed as an analogue of A4(1) considered in §1.
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where L(%,s)|i_; denotes the leading Laurent coefficient of L(%,s) (:=L(f,s) for any
fe B(U ;Kzﬂg)) at s = 1, where .%; is any orthonormal basis of &; consisting of Hecke
1

eigen forms, and
~ mri-2)ril—m+1)
F(l) = m—21 m—3\ ’
ri—"-=)ra—-"=°)

N
—~
B
~—

|
M‘

By (€) =16 (27"0(.2))"

Remark. We have I'(l) = 14+ O(I"!) as | — co. Note that #(.%;) = dim¢(&;) < I"™ and
m = dim¢ 2.

Let S be a finite set of prime numbers such that p € S is relatively prime to #(.4,'/4)
and Q(§). For p € S, choose a maximal set of isotropic vectors (ej)gpz , and (e;-);p: 1 in 27,
satisfying (e;,e}) = d;; and Zz, = @;’;I(Zpej + Zpe;) @ A (Witt decomposition) with
M= {X € Z, | (X,e;) = (X,¢}) = 0(Vj € [1,m]}. Let By, be the Borel subgroup of
O(Qy) stabilizing the isotropic flag {F;j := (e1,...,¢€j)q, | j € [1,7p]}. Then, O(Q,) = B,K,
(Iwasawa decomposition) holds. For g € O(Q)), a coset b(g) € B,/B, N K, is well-defined
by the relation g € b(g)K,. Let T}, be the maximal Q,-split torus of O(Q,) such that there
exist Qp-rational characters x; : T), — Q) satisfying t(e;) = x;(t)ej, t(e}) = x; (t)_le;- for all
j € [1l,mp] and t(X) = X for all X € .#. Since T}, is a Levi subgroup of B,, each x; is viewed
as a character of B, by the natural surjection B, — T},. Set X, := (C/2n(logp)~1Z)™; by
identifying X, with the space of continuous characters of T, trivial on T}, N K,, we have
a natural action of the Weyl group W), of (7,,,0(Q,)) on X,. For v = (Vj);pzl € Xp, let
wy : O(Qp) — C be the zonal spherical function of Satake parameter v, which is defined by

ala)i= [ TLhaa)ly™ dk, g 0@y,

P j=1
By [18], the map v — w, yields a bijection from X,/W), onto the set of zonal spherical
functions on O(Q)). Let %2* C X, denote the locus of zonal spherical functions of positive
type. For v € %g*, let WO(Q”)(V) denote the smooth spherical representation generated by
the right-translations of the function w, on O(Q,); it is known that 7°(@) () is irreducible
and unitarizable ([4]). Let .7, denote the Hecke algebra for (O(Q,), K,), which is the same
as J," due to D?ZVP = %, For ¢ € A, its spherical Fourier transform b : X, — Cis
defined by

~

) = / o(9)w_n(g)dg. g€ O(Q),
G(Qp)

where dg is the unique Haar measure on O(Q)) such that vol(K,) = 1. Then it is known
that there exists a Radon measure p1} ! (Plancherel measure) on [X)t] := Xt /W, such that

$g) = o) wi(9) iy (v), & € S
(x5
Since #(.2) /£1) = [Q)| T #((L) Y/ LY), we have (£)Y = (L), for p € S. Thus,
in the same way, we have the space [%?f (&)] of Satake parameters for zonal spherical func-

tions on Of((@p) of positive type, the spherical representation TrOf(QP)(z) of Of(Qp) for
z € [X07(¢)]. Let % = &, %y be a restricted tensor decomposition of % to irreducible

smooth representations %, of Oﬁ((@p). Since % C L2(O§(Q)\O§(Af)) and %(Kﬁ*) # {0},
each %), for p € S is unitarizable and spherical. As such, %, for p € S is isomorphic to

701(@) (2p) with z, € [X)1(£)] being the Satake parameter of %,. We say that % is tempered
at p € S, if z, is purely imaginary. Set [Z{OSJF] = Hpes[f{gﬂ and [.’f%ﬂf)] = HPGS[%OS+(§)].
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Theorem 3.3. Suppose 2§ € £,. Let ¢ € {£1} be such that 55, # @. Let S be a finite set
of prime numbers such that p € S is relatively prime to #(£V /L) and Q(§). Suppose %,
is tempered at allp € S. Let 5 = Qpespp be an element of ®p€$%'

. 5; = [Les @ € CC([%gfr]) : the spherical Fourier transformation of o5 = Qpcsdp.
o vs(F) = {vp(F)}pes € [X57] : the Satake parameter of F at S.
o a(%):=—ords—1 L(%,s) €{0,1}.

Then, as | — oo with (—1)! = ¢,

Z #( Z (F’1/2)|A{v(f)’2@(us(F))

(1Ogl FeZ erE
— By (&) L%, 8)[121 A (99),
where, A% is a linear functional on Cc([X%']) such that the value A% (@) at o = @pesay, is
H H(m—H /2 (
L(L, 7 (=); Ad) L1,

peS

2T (2p) By (1) L (5,75 (v))

7) L(
() /[xgﬂ () L1 79 (): Ad)

dud(v),

where we set H = O§(Qp) and G = 0(Qyp) and z, € [xg+ (&)] is the Satake parameter of %,
atp €S.

4 Overview of proofs

Our method is based on a computation of a Fourier integral of a deliverately designed
Poincaré series. Contrary to [3] and [24], and in a similar spirit to [11], neither Petersson-
Kitaoka’s formula nor the approximate functional equation is used. The most novel part
in the definition of our Poincaré series is the usage of the archimedean Shintani function
q)'ls(s) : O(R) — C, which is a smooth function on O(R) defined by the formula

m—1 7n71)

Bi(5,9) 1= ()20 Agoe) {isen () S5} T g € OR)

where

Agoo) = Q(E)| 26, 9(vF)),  Blgos) == (e1,9(v5))

with v§ := 60\;6 + i_aj/gai € Zt (see [21, §4], [22, §4.1]). It turns out that & = @f(s) is a

unique C*°-function on O(R) that satisfies the conditions:

b (I)(gook) = J(kaﬁ())_lq)(goo)a k€ Koo,
o J(9o0,30)'®(goo) on O(R)? /K, = Z is holomorphic,

m—1 ok
® (hgse) = 1775 @(g), n=['1 ] € PE(R),

-

° <I>(b§,o) =
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We remark that the unramified Shintani funcions over p-adic fields ([14]) played an important
role in the formulation of the refined Gan-Gross-Prasad conjecture (or the Ichino-lkeda
conjecture) originally due to [9] (see also [12]). For a Hecke function ¢s € @,cg 7,
let ¢ denote the function on O(A¢) defined as ¢(g) = [[ e #p(9p) [[pzs Ik (gp) for g =
(gp)p<oo € O(Ag). Then set

Be(osior) = [ SO gr) dh, ge € Ole)
O%(Ag)

where f() is the function used to define the Eisenstein series ng (f,s) associated to the

Hecke eigenfunction f on Of(@)\Of(Af). Define a smooth function <I>l§(¢g|s) on O(A) by

% (] googr) = B (s; goo) Pr(ds: 95),  googr € O(R)O(Ay).

Choose an entire function §(s) on C such that for any compact set I C R and for any N > 0
the estimation e™13(c 4 it) < n (14 [t])™ holds for o € T and ¢ € R, and set

c+ioo

B 40sl.9)i= [ BOD.IAL ~9) 84 (oslsig) ds

c—ioo
where D, (s) := Hje[o mfl]f{miq}(s — mT_l + j), which is introduced to kill the possible
) 2

poles of A(f,s), the normalizing factor of the Eisenstein series (¢f. (3.1)). Now, our adelic
Poincaré series is defined by the infinite sum

Flf0sifio) = > /%eslB.g), g€O®),
TEPS(Q\O(Q)

which is shown to be absolutely and normally convergent on O(A) yielding a cusp form in
S, for [ > 1. Moreover, its spectral expansion in terms of an orthonormal basis .%; of &, is
given as

F/(¢518: 9)

c+ioco -
— [ 8t { 20T (3)7 CEBGs) Y DuIL (P + ) af (€ Ar(6) Flo) | s
¢—lioo FeZ

(4.1)

where Blg(s) is an entire function studied in [21, §4 (Proposition 30)]. We deduce a trace-
formula-like identity by computing the integral (= Fourier-Bessel integral)

_ ~ 1-tQX —271Q(X r 0 0 _
/ Flroyan [ B (ol PR [ 8 ]k ) w0 tax
Of(Q\O (A¢) L ng 1 r

in two ways. We use the spectral expansion in (4.1) to relate this integral to the weighted
average of the L-functions in Theorems 3.2 and 3.3. We invoke Liu’s computation ([12]) of
local period of zonal spherical functions to compute the main term in the geometric side
(see [22, §5.2]). To deduce Theorems 2.1 and 2.2, we specialize the asymptotic formulas in
Theorems 3.2 and 3.3 to the setting

L= {Y - [fw —tg’(w] | X €78, 2/ 2" € Z} ~ 75, Q(Y):=1det(Y?), YeZ

with w = [91 é] , and transcribe the formula in the language of Siegel modular forms through

the exceptional isomorphism p : PGSp, — SO(Q) defined by p(g)Y = gYg~!.
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