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1 Introduction (Elliptic modular case)

For an even positive integer l ∈ 2Z>0, let Sl(SL2(Z)) denote the set of all the holomorphic
cusp forms on SL2(Z) of weight l; as usual, the C-vector space Sl(SL2(Z)) is endowed with
the Petersson inner product defined by

⟨ϕ, ϕ1⟩ :=
∫
SL2(Z)\h1

ϕ(τ)ϕ1(τ)(Imτ)
l dµh1(τ)

for ϕ, ϕ1 ∈ Sl(SL2(Z)), where dµh1(τ) = y−2 dxdy is the volume element associated with the
Poincaré metric of the upper-half plane h1 := {τ = x+ iy | x ∈ R, y ∈ R>0}. (The imaginary
unit of C is denoted by i.) It is well-known that Sl(SL2(Z)) is a finite dimensional C-vector
space whose dimension dl is numerically computable by an explicit dimension formula; in
this article, only its asymptotic behavior dl =

l
12 + o(1), l → ∞ is of relevance (if any). The

important arithmetic information of modular form ϕ ∈ Sl(SL2(Z)) is encoded in its Fourier
coefficients {aϕ(n) | n ∈ Z>0}, which fits in the q-expansion:

ϕ(τ) =

∞∑
n=1

aϕ(n) q
n, q := e2πiτ .

The Hecke operators T (n) (n ∈ Z>0) on Sl(SL2(Z)) defined as

[T (n)ϕ] (τ) = nl−1
∑

ad=n,0⩽b<d

ϕ

(
aτ + b

d

)
d−l, ϕ ∈ Sl(SL2(Z)),

form a commuting family of self-adjoint operators on the finite dimensional Hilbert space
Sl(SL2(Z)). Thus, by linear algebra, we can find an orthogonal basis Fl, which diagonalizes
the operators T (n) (n ∈ Z>0) simultaneously. By examining the action of the Hecke opera-
tors on ϕ in terms of the Fourier coefficients aϕ(n), we see that aϕ(1) ̸= 0 and the eigenvalue
of T (n) on ϕ ∈ Fl is aϕ(n)/aϕ(1). Thus, we can choose Fl in such a way that aϕ(1) = 1 for
all ϕ ∈ Fl; if this condition is met, Fl is said to be Hecke normalized. Set

Aϕ(n) :=

(
(4π)−(l−1) Γ(l)

⟨ϕ, ϕ⟩

)1/2

n(1−l)/2aϕ(n)

for any non zero element ϕ ∈ Fl; we could say that the numbers Aϕ(n) resembles to the
Dirichlet characters in that they pssesses the following two properties:

(i) (Asymptotic orthogonality) For any m,n ∈ Z>0,

1

l

∑
ϕ∈Fl

Aϕ(n)Aϕ(m) = δm,n +Oϵ

(
(mn)1/4+ϵ

√
l

)
(l → ∞).
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(ii) (Asymptotic boundedness) For any ϵ > 0,

Aϕ(n) ≪ϵ (l n)
ϵ, ϕ ∈ Fl, n ∈ Z>0,

l−ϵ ≪ε Aϕ(1) ≪ϵ l
ϵ, ϕ ∈ Fl.

Property (i) is a consequence of Petersson’s formula, which evaluates the quantity on the left-
hand side of the equality in terms of the Bessel function and the Kloosterman sum. Property
(ii) follows from the Rankin-Selberg formula, which identifies ∥f∥2 (4π)−(l−1) Γ(l)−1 with a
positive constant multiple of Ress=lL(ϕ× ϕ̄, s); we then invoke Deligne’s estimate aϕ(n) =
Oϵ(n

(l−1)/2+ϵ) and the estimate

l−ϵ ≪ε Ress=lL(ϕ× ϕ̄, s) ≪ϵ l
ϵ, ϕ ∈ Fl

due to Hoffstein-Lockhart and Iwaniec.
The Hecke’s L-function of the Hecke eigenform ϕ ∈ Fl is initially defined in terms of

Dirichlet series of its Fourier coefficients or the Euler product:

L(ϕ, s) :=
∞∑
n=1

aϕ(n)

ns
=

∏
p:primes

(1− aϕ(p) p
−s + p−2s+2l−1)−1,

which is absolutely convergent on Re(s) ≫ 0. Owing to the integral representation

Λ(ϕ, s) := ΓC(s)L(ϕ, s) =

∫ ∞

0
ϕ(iy)ys

dy

y
(Re(s) ≫ 0)

with ΓC(s) := (2π)−sΓ(s), the completed L-function Λ(ϕ, s) has a holomorphic continuation
to C satisfying the functional equation

Λ(ϕ, l − s) = (−1)l/2 Λ(ϕ, s).

In particular, L(ϕ, l/2) = 0 unless l/2 is even. Suppose l/2 is even. The central value
L(ϕ, l/2) is of some arithmetic interest. Using Petersson’s formula and the approximate
functional equation (Appr FE), one can prove the asymptotic formula

♠ :
1

l

∑
ϕ∈Fl

L (ϕ, l/2) |Aϕ(1)|2 ∼ 1 (l → +∞)

for their “harmonic” average1, which yields nonvanishing L-values in large weights. Indeed,
♠ also can be deduced from an exact formula of the average proved in [11], in which neither
Petersson’s formula nor Apprx FE is used. Since l−ϵ ≪ϵ Aϕ(1) ≪ϵ l

ϵ (∀ϵ > 0) and #(Fl) ≍
l, the asymptotic formula is consistent with the Lindelöf hypothesis

(∀ϵ > 0) L(ϕ, l/2) = Oϵ(l
ϵ), ϕ ∈ Fl

in weight aspect, which is a consequence of the generalized Riemanian hypothesis for L(ϕ, s).

The convexity bound L(ϕ, l/2) = Oϵ(l
1
2
+ε) for ϕ ∈ Fl is proved by the functional equation

and Stirling’s formula; any bound by Oϵ(l
θ+ϵ) with the exponent θ ∈ (0, 1/2) is called a

subconvexity bound. Given the Lindelöf hypothesis is still far out of reach, to persue a
smaller subconvexity exponent θ is a major business in this context. For this, a common
approach is to study the asymptotic for the higher harmonic moments

1

l

∑
ϕ∈Fl

M(ϕ)L (ϕ, l/2)n |Aϕ(1)|2 (n = 2, 3, . . . )

1|Aϕ(1)|2 coincides with so called the harmonic weight.
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with suitably designed mollifierM(ϕ), whose proof, however, is considerably hard compared
to the proof of ♠. There is another direction of generalization for ♠ if one only wants to
have nonvanishing central L-values but for more general automorphic L-functions. Namely,
regarding PGL(2) ∼= SO(2, 1) as the first layer of the “tower” SO(2,m) (m = 1, 2, . . . ), we
may seek a formula analogous to ♠ for higher degree Euler products of modular forms on
SO(2,m). This problem was first proposed by the author’s talk in 6-th Fukuoka Number
Theory Symposium and a partial result was reported there. The author thanks the organiz-
ers of the Fukuoka Number Theory Symposium of this year for giving him an occasion to
deliver a follow-up talk on this topic. In this write-up, we state an SO(2,m) counterpart of
the formula ♠ in a complete and refined form omitting all proofs; for full account, we refer
to [22] and [23].

2 Main result I (Siegel modular case)

For details, we refer to [22]. The symplectic group with similitude is defined by GSp2 :=
{g ∈ GL4 | tg

[
02 12
−12 02

]
g = ν(g)

[
02 12
−12 02

]
} with ν(g) ∈ GL1 the similitude norm of g; Sp2

is the kernel of the rational characer ν. Let h2 := {Z = X + iY ∈ M2(C) | tZ = Z, Y ≫ 0}
be the Siegel upper-half space. The space Sl(Sp2(Z)) of holomorphic Siegel cusp forms
on Sp2(Z) of weight l ⩾ Z>0 is a finite dimensional C-vector space; dimC Sl(Sp2(Z)) is
explicitly known by Igusa’s dimension formula, which tells us that dimC Sl(Sp2(Z)) ≍ l3

and that Sl(Sp2(Z)) = {0} unless l ⩾ 10. We endow Sl(Sp2(Z)) with the inner product
defined by

⟨Φ|Φ1⟩ =
∫
Sp2(Z)\h2

Φ(Z)Φ1(Z) (det Im(Z))ldµh2(Z), Φ,Φ1 ∈ Sl(Sp2(Z)),

where dµh2(Z) = det(Y )−3 dX dY is the invariant volume element on h2. Let Φ(Z) be a
non-zero element of Sl(Sp2(Z)) with l ∈ Z⩾10 and

Φ(Z) =
∑

T∈Q+

aΦ(T ) exp(2πitr(TZ)), Z ∈ h2

its Fourier expansion, where {aΦ(T ) | T ∈ Q+} is the set of Fourier coefficients of Φ, which
is indexed by Q+, the set formed by all the positive definite elements in

Q :=
{
T =

[
b a/2

a/2 c

]
| a, b, c ∈ Z

}
.

The unimodular group SL2(Z) acts on the Z-lattice Q as

Q× SL2(Z) ∋ (T, δ) 7−→ δT tδ ∈ Q.

From the modularity of Φ(Z), one can obtain the modular invariance of the Fourier coeffi-
cients, i.e.,

aΦ(δT
tδ) = aΦ(T ), δ ∈ SL2(Z), T ∈ Q+.

Let D < 0 be a negative fundamental discriminant. Then the set

Q+
prim(D) :=

{[
b a

2
a
2

c

]
∈ Q+

∣∣∣ a2 − 4bc = D, (a, b, c) = 1
}

is preserved by the action of SL2(Z), and the orbit space SL2(Z)\Q+
prim(D) is in a natural

bijective correspondence with the ideal class group Cl(Q(
√
D)), which is a finite abelian
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group; the ideal class corresponding to the SL2(Z)-orbit of T ∈ Q+
prim(D) is denoted by [T ].

Let χ be a character of Cl(Q(
√
D)). Define

R(Φ, D, χ) :=
∑

T∈SL2(Z)\Q+
prim(D)

aΦ(T )χ([T ]).

Set

ωΦ
l,D,χ := cl,D

|R(Φ, D, χ−1)|2

⟨Φ|Φ⟩
×

{
1 (χ2 = 1),

2 (χ2 ̸= 1),

where

cl,D :=

√
π

4
(4π)3−2lΓ

(
l − 3

2

)
Γ(l − 2)×

(
|D|
4

) 3
2
−l 4

wD hD

with hD := #(Cl(Q(
√
D)) and wD := #(Q(

√
D)×tor).

Next let us recall some known facts on the spinor L-function, which can be associated
to our Φ(Z) only when it is a joint eigenfunction of all the Hecke operators. Fix such a Φ
for a while. Let A denote the ring of adeles of Q and Af the subring of finite adels. Since
GSp2(A) = GSp2(Q)GSp2(R)0GSp2(Ẑ), from Φ(Z), we can form a function Φ̃(g) on the
adelization GSp2(A) in such a way that

Φ̃(γg∞gf ) = ν(g∞)l/2 det(CZ +D)−lΦ((Ai+D)(Ci+D)−1),

γ ∈ GSp2(Q), g∞ =
[
A B
C D

]
∈ GSp2(R)0, gf ∈ GSp2(Ẑ).

Note that Φ̃ is invariant by the action of the center of GSp2(A). Let πΦ denote the auto-
morphic cuspdidal representation of GSp2(A) generated by the Φ̃. It is known that πΦ is
irreducible; as such, it is decomposed to a restricted tensor product to irreducible smooth
representations πΦ,p of GSp2(Qp) for p < ∞ and a holomorphic discrete series representa-
tion πΦ,∞ of weight l of GSp2(R), i.e., πΦ ∼=

⊗
v πΦ,v. Note l ⩾ 10. Let p be a prime;

since Φ̃ is right GSp2(Zp)-invariant, the representation πΦ,p contains a non-zero GSp2(Zp)-
fixed vectors, i.e., πΦ,p is an unramified representation. The unramified representations are
parametrized by Satake parameters, which will be recalled next briefly. Let B be the Borel
subgroup of GSp2, which consists of all the matrices of the form[

A 0
0 λ tA−1

] [
12 B
0 12

]
, A ∈ GL2, λ ∈ GL1, B = tB ∈ Mat2 (2.1)

with A being an upper-triangular unipotent matrix of degree 2. The set of elements of the
form (2.1) with A = 12 (resp. A being diagonal and B = 0) is denoted by U (resp. by T).
Then U is the unipotent radical of B and B = TU is a Levi decomposition. The three
involutions on the complex torus (C×)2

(a, b) 7→ (b, a), (a, b) 7→ (a−1, b), (a, b) 7→ (a, b−1)

generate a subgroup W ⊂ Aut((C×)2) isomorphic to the dihedral group of order 8, which
is a realization of the Weyl group of the root system of type C2. For any y = (a, b) in the
quotient set (C×)2/W , let Ip(y) be the smooth representation of GSp2(Qp) parabolically
induced from a character χα,β of the Borel subgroup B(Qp)

χα,β(diag(t1, t2, λt
−1
1 , λt−1

2 )n) = |t1|−α+β
p |t2|−α−β

p |λ|αp , (t1, t2, λ) ∈ (Q×
p )

3, u ∈ U(Qp),

where α := ordp(a) and β := ordp(b). Note that χ−3,1 is the modulus character of B(Qp).
Then it is known that the smooth representation Ip(y) is of finite length and contains a
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unique unramified irreducible subquotient to be denoted by πurp (y). Another realization
of πurp (y) is obtained as the smallest subspace of smooth functions on GSp2(Qp) that is
invariant by the right translations by GSp2(Qp) and contains the spherical function ωp(y) :
GSp2(Qp) → C (a la Harish-Chandra and Satake) defined by

ωp(y; g) =

∫
GSp2(Zp)

χα−3,β+1(t(kg))dk, g ∈ GSp2(Qp),

where t(g) ∈ T(Qp)/T(Zp) is uniquely defined by demanding g ∈ t(g)U(Qp)GSp2(Zp). The
map y 7→ πurp (y) yields a bijection form (C×)2/W onto the set of all the equivalence classes
of smooth irreducible unramified representations of GSp2(Qp). Let Yp denote the set of
y = (a, b) ∈ C2 such that ωp(y) is positive type, or equivalently πurp (y) is unitarizable. Set
[Yp] := Yp/W . Since the local representation πΦ,p is irreducible, unramified and unitarizable,
there exists a unique point yp(Φ) := (ap, bp) ∈ [Yp], refereed to as the Satake parameter of
Φ at p, such that πΦ,p is equivalent to πurp (ap, bp). The spinor L-function attached to Φ (or
to πΦ) is initially defined by the Euler product of degree 4

L(s, πΦ) :=
∏
p<∞

(1− app
−s)−1(1− bpp

−s)−1(1− a−1
p p−s)−1(1− b−1

p p−s)−1, Re(s) > 5/2,

which is known to be absolutely convergent on the half-plane Re(s) > 5/2 due to the
unitarity of πΦ. The completed L-function for L(s, πΦ) is defined as

Λ(s, πΦ) = ΓC(s+ 1/2)ΓC(s+ l − 3/2)× L(s, πΦ).

The basic properties of the spinor L-functions are listed below; (1) and (2) are due to
Andrianov ([1], [2]), and (3) is proved independently by Oda ([16]) and by Evdokimov ([6]).

(1) The completed spinor L-function Λ(s, πΦ) admits a meromorphic continuation to C
admitting possible simple poles at s = 3

2 ,
−1
2 , and satisfying the functional equation

Λ(1− s, πΦ) = (−1)lΛ(s, πΦ).

(2) For any T ∈ Q+
prim(D), the Dirichlet series

ZΦ,T (s) :=
∞∑
n=1

aΦ(nT )

ns

is absolutely convergent on Re(s) > l + 1 and equals to

L
(
s− l + 3

2 , πΦ
)
×

∑
λ∈ ̂Cl(Q(

√
D))

λ([T ])−1w−1
D

L(s− l + 2, λ−1)
R(Φ, D, λ).

(3) The function Λ(s, πΦ) is entire unless l is even, in which case s = 3
2 is a pole if

and only if Φ is a Saito-Kurokawa lifting SK(f) from a Hecke-eigen cusp form f ∈
S2l−2(SL2(Z)); if this is the case,

L(s, πΦ) = ζ
(
s− 1

2

)
ζ
(
s+ 1

2

)
L(s, f).

Remark. (1) Due to the sign of the functional equation, L
(
1
2 , πΦ

)
= 0 unless l is even.

(2) When Φ = SK(f) with f ∈ S2l−2(SL2(Z)) being Hecke eigen form, then L(12 , f) = 0, so
that

L
(
1
2 , πSK(f)

)
= ζ(0)L′ (1

2 , f
)
.
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Theorem 2.1. Let D be a negative fundamental discriminant and χ a character of the ideal
class group Cl(Q(

√
D)). There exists a constant C = C(D) > 1, independent of χ, such

that as l ∈ 2Z>0 grows to infinity,∑
Φ∈Fl

L(1/2, πΦ)ω
Φ
l,D,χ−1 = 2P (l,D, χ) +O(C−l)

with Fl being any orthonormal basis of Sl(Sp2(Z)), and

P (l,D, χ) :=

{
L(1, ηD) (ψ(l − 1)− log(4π2)) + L′(1, ηD) (χ = 1),

L(1, χ) (χ ̸= 1),

where ψ(s) := Γ′(s)/Γ(s) is the di-gamma function and ηD is the Kronecker character, and
L(s, χ) is the Hecke L-function of the idele class character of Q(

√
D)× induced by χ.

To describe our second theorem, which is a refinement of Theorem 2.1, we need additional
notation and definitions. Let Hp denote the Hecke algebra for (GSp2(Qp),GSp2(Zp)), i.e.,
the covolution algebra of all those C-valued functions on GSp2(Qp) that is bi-GSp2(Zp)-
invariant and is compactly supported on GSp2(Qp). The spherical Fourier transform of
f ∈ Hp is defined by

f̂(y) :=

∫
GSp2(Qp)

f(g)ωp(a
−1, b−1; g) dg, y = (a, b) ∈ [Yp]

with dg being the Haar measure on GSp2(Qp) such that vol(GSp2(Zp)) = 1. The Fourier
inversion formula is known to be described as

f(g) =

∫
Yp/W

f̂(y)ωp(y; g) dµ
Pl
p (y), f ∈ Hp, g ∈ GSp2(Qp),

where dµPlp (y) is the Plancherel measure, which is a Radon measure on [Yp] supported on
the tempered locus [Y 0

p ] := U(1)2/W . For y = (a, b) ∈ (C×)2/W and an irreducible smooth
unramified representation of GL2(Qp) of Satake parameter Bp = diag(c, c−1) ∈ GL2(C),
set Ap := diag(a, b, a−1, b−1) ∈ Sp4(C) (= LPGSp4)) and

L(s, πurp (y)× σp) := det(18 − (Ap ⊗Bp) p
−s)−1,

L(s, πurp (y); Ad) := det(1− ρ10(Ap)p
−s)−1,

where ρ10 is the 10 dimensional representation of Sp4(C) on its Lie algebra. For a class group
character χ ∈ Ĉl(Q(

√
D), viewing it as a character of the idele class group of Q(

√
D)×, we

form its automorphic induction AI(χ) =
⊗

v AIp(χ) to GL2(A), which is an irreducible
automorphic representation of GL2(A) such that its completed L-function (á la Jacquet-
Langlands) coincides with the completion of L(s, χ). It is known that AI(χ) is not cuspidal
if and only of χ = NQ(

√
D)/Q ◦χ0 for some Hecke character χ0 of Q×, in which case AI(χ) =

χ0 ⊞ ηDχ0.
For each l ∈ (2Z)⩾10, let S

#
l (Sp2(Z)) := SK(S2l−2(SL2(Z)) be the image of the Saito-

Kurokawa lifting, which is a linear subspace of Sl(Sp2(Z)) stable under the action of Hecke

operators. Fix an orthonormal basis F#
l of S#

l (Sp2(Z)) and extend it to an orthonormal

basis Fl of the total space Sl(Sp2(Z)). Set F ♭
l := Fl − F#

l . For a finite set S of prime
numbers, set [YS ] :=

∏
p∈S [Yp] and [Y 0

S ] :=
∏

p∈S [Y
0
p ].
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Theorem 2.2. Let D < 0 be a negative fundamental discriminant and S a finite set of odd
prime numbers prime to D. For any α ∈ C([YS ]), as l ∈ 2Z>0 grows to infinity,

1

(log l)δ(χ=1)

∑
Φ∈F ♭

l

α(yS(Φ))L(1/2, πΦ)ω
Φ
l,D,χ−1 −→ 2Λχ

S(α)×

{
L(1, ηD) (χ = 1),

L(1, χ) (χ ̸= 1),

where yS(Φ) = {yp(Φ)}p∈S ∈ [YS ] is the set of Satake parameter of Φ, and Λχ
S is a Radon

measure on [YS ] supported on [Y 0
S ] such that

Λχ
S(α) :=

∏
p∈S

ζp(1)
−1ζp(2)ζp(4)

L(1,AI(χ)p)

∫
[Y 0

p ]
αur
p (x)

L
(
1
2 , π

ur
p (y)×AI(χ)p

)
L
(
1
2 , π

ur
p (y)

)
L(1, πurp (y),Ad)

dµPlp (y).

Corollary 2.3. Let D < 0 be a negative fundamental discriminant, and S be a finite set of
odd prime numbers prime to D. Let U be a measurable subset of [Y 0

S ] such that µPlS (S) > 0
and µPlS (∂U) = 0. Then, there exists l0 ∈ Z>0 with the following property: For any l ∈ 2Z>l0

there exists Φ ∈ F ♭
l such that

L(1/2, πΦ)L(1/2, πΦ × ηD) > 0, yS(Φ) ∈ U.

To prove these results, we invoke the following deep results on automorphic represen-
tations of GSp2(A): Suppose Φ ∈ Sl(Sp2(Z)) is a joint Hecke eigenform which is not a
Saito-Kurokawa lift from cusp forms on SL2(Z). Then,

• (The Ramanujan property of Φ, conjectured by Kurokawa and proved by Weis-
sauer [25]) The automorphic represenation πΦ ofGSp2(A) is tempered, i.e., the Satake
parameter yp(Φ) lies in [Y 0

p ] for all p <∞.

• (The existence of transfer to GL4 due to Pitale-Saha-Schmidt [17]) There exists
an irreducible cuspidal automorphic representation Π of GL4(A) of symplectic type
such that L(s,Π) = L(s, πΦ). As a consequence of this, invoking a result by Lapid,
they deduce the non-negativity L

(
1
2 , πΦ

)
⩾ 0, which is what we need.

• (Refined form of Boechrere’s conjecture due to Liu [12], furthur computed by
Dickson-Pitale-Saha-Schmidt [5], and proved by Furusawa and Morimoto [7], [8]) For
any fundamental discriminant D < 0 and for any character χ of Cl(Q(

√
D)),

|R(Φ, D, χ−1)|2

∥Φ∥2
=

24l−4π2l+1

(2l − 2)!
w2
D|D|l−1L(1/2, πΦ ×AI(χ))

L(1, πΦ,Ad)
.

2.1 Related works

• Kowalski-Saha-Tsimerman [10] obtained (among other things) an asymptotic formula
of
∑

Φ∈Fl
L(s, πΦ)ω

Φ
l,−4,1 with s being in the convergent range of the Euler product.

Note that Q(
√
−4) = Q(i) has class number 1 so that χ = 1. Their tool is Kitaoka’s

formula (a Siegel modular analogue of Petersson’s formula) and Sugano’s formula of
spherical Bessel functions over Qp.

• Blomer [3] proved the formula∑
Φ∈Fl

L(1/2, πΦ)ω
Φ
l,−4,1 = 2L(1, η−4)(log l − log(4π2)) + L′(1, η−4) +O(l−1),
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for average of central L-values. This result is consistent with our result for D = −4.
More strikingly, an asymptotic formula of the second moment∑

Φ∈Fl

|L(1/2, πΦ)|2 ωΦ
l,−4,1 (l → ∞)

is elaborated.

• Waibel [24], employing the method by [3], proved a second moment formula for the
central spinor L-values of Siegel cusp forms with fixed even weight and varying square
free levels of Siegel parabolic type.

3 Main results II (for forms on type IV symmetric domain)

For details of this section, we refer to [23]. Given a Z-module M and a commutative ring
R, we use the notation MR to denote the R-module M ⊗Z R.

3.1 Notation and preliminaries

Let m ∈ Z⩾3 be an odd integer. Let L ∼= Zm+2 be a lattice of signature (2−,m+) (=free
Z-module endowed with a quadratic form Q : L → Z whose scalar extension to LQ is
non-degenerate) satisfying

(A) L is maximal even-integral, i.e., Q(L ) ⊂ 2Z and L is maximal among all Z-lattices
in LQ with this property.

(B) L admits the orthogonal splitting

L = ⟨ε1, ε′1⟩Z ⊕ L1, L1 = ⟨ε0, ε′0⟩Z ⊕ L0

with ⟨εj , ε′j⟩Z hyperbolic planes. Thus, L0 is positive definite and maximal even-
integral.

Let (X,Y ) := 1
2(Q(X + Y )−Q(X)−Q(Y )) (X,Y ∈ LQ) be the associated bi-linear form;

then (L ,L ) ⊂ Z due to (A). Let O := OL be the orthogonal group (scheme over Z)
defined by L . Set D := L1,R + iΩ− a complex domain in L1,C ∼= Cm, where Ω− := {Y ∈
Ω | (ξ, ε0 − ε′0) < 0} is the connected component containing the point z0/i := ε0 − ε′0 of the
cone Ω := {Y ∈ L1,R | Q[Y ] < 0 }. The Lie group G := O(R)0 ∼= SO0(2,m) acts on D
holomorphically in the way described as follows. For (z, g) ∈ D × G, define g⟨z⟩ ∈ D and
J(g, z) ∈ C∗ by the relation

g P (z) = J(g, z)P (g⟨z⟩),

where
P (z) = (−2−1Q[z]) ε1 + z+ ε′1 ∈ LC ∼= Cm+2.

Then G×D ∋ (g, z) 7−→ g⟨z⟩ ∈ D is the action of G on D such that z 7→ g⟨z⟩ is a holomorphic
automorphism of D . Actually, this action is extended to an action of the disconnected group
O(R) (with 4-connected component) on L1,R+iΩ; let O(Q)+ denote the element of γ ∈ O(Q)
which preserves the connected component D of L1,R + iΩ. The function J(g, z) satisfies the
automorphy condition J(gg′, z) = J(g, g′⟨z⟩) J(g′, z) for all g, g′ ∈ G and z ∈ D . The complex
manifold D is endowed with the G-invariant Kähler 2-form ωD(z) := 2−1i∂∂̄ Q[Im(z)], which
yields the Bergmann metric of D . Let K∞ := StabG(z0); then, K∞ ∼= SO(2)× SO(m) is a
maximal compact subgroup of G and we have a G-isomorphism

G/K∞ ∼= D , gK∞ 7→ g⟨z0⟩.
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For a prime p, let K∗
p denote the kernel of the natural group homomorphism O(Zp) −→

Aut(L ∨
Zp
/LZp), where L ∨ := {X ∈ LQ | (L , X) ⊂ Z} is the dual lattice of L ; O(Zp) =

{g ∈ O(Qp) | g(LZp) = LZp} is a maximal compact subgroup of O(Qp) and K∗
p is an open

subgroup O(Zp). Set K∗
f :=

∏
pK

∗
p. Let l ∈ Z>0. A function F : D × O(Af ) → C is called

a holomorphic cusp form of weight l if it satisfies the conditions:

(i) F (γ⟨z⟩, γgfk) = J(γ, z)lF (g) for all γ ∈ O(Q)+, z ∈ D and gf ∈ O(Af ), k ∈ K∗
f .

(ii) For any gf ∈ O(Af ), the function z → F (z, gf ) on D is holomorphic.

(iii) |Q[Im(z)]|l/2F (z, gf ) is bounded on D ×O(Af ).

Let Sl denote the space of all the holomorphic cusp forms of weight l; then Sl is finite
dimensional, and dimCSl ≍ lm (l → +∞) by the Hirzebruch-Mumford proportionality
principle. We endow Sl with the inner product:

⟨F |F1⟩ :=
∫
O(Q)+\(D×O(Af ))

F (z, gf )F1(z, gf ) dµD(z) dgf ,

where dDµ(z) is the Kaehler volume element on D and dgf is a (unique) Haar measure such
that vol(K∗

f ) = 1. Moreover, the space Sl has a natural action of the Hecke algebra H +
p for

all p, where H +
p is defined to be the center of the Hecke algebra of the pair (O(Qp),K

∗
p). For

gf ∈ O(Af ), there exists a Z-lattice L1(gf ) ⊂ L1,Q such that for any F ∈ Sl, the function
z 7→ F (z, gf ) is given by the Fourier expansion

F (z, gf ) =
∑

η∈L1(gf )∩(−Ω−)

aF (gf ; η) exp(2πi(η, z)), z ∈ D ,

where aF (gf ; η) ∈ C will be refereed to as the Fourier coefficients.
From now on, we fix ξ ∈ L1,Q such that

(a) (signature condition) ξ ∈ iD , or explicitly Q[ξ] < 0 and (ξ, z0/i) < 0.

(b) (primitivity) ξ is a primitive vector of the lattice L ∨
1 .

(c) (maximality) L ξ
1 := L1 ∩ ξ⊥ is a maximal even-lattice in the quadratic space ξ⊥.

Now define Q-algebraic subgroups of O as

O1 := StabO(ε1, ε
′
1), Oξ := StabO(ξ), Oξ

1 := Oξ ∩O1.

By the signature conditions, we have O1(R) ∼= O(1,m− 1), Oξ(R) ∼= O(1,m) and Oξ
1(R) ∼=

O(m−1). In particular, Oξ
1(R) is compact. Let Kξ,∗

1 :=
∏

pK
ξ1∗
1,p with Kξ∗

1,p := {u ∈ Oξ
1(Zp) |

u(X)−X ∈ L ξ
1,Zp

(∀X ∈ (L ξ
1,Zp

)∨)}, and

f : Oξ
1(Q)\Oξ

1(Af )/K
ξ∗
1 −→ C

be a joint eigenfunction of (H ξ
1,p)

+ for all p, where (H ξ
1,p)+ denote the center of the Hecke

algebra of (Oξ
1(Qp),K

ξ∗
1,p). For F ∈ Sl with the Fourier coefficients aF (gf ; η), define

afF (ξ) := µξ
−1

h∑
j=1

f(uj)

eξ(j)
aF (uj ; ξ),
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where uj ∈ Oξ
1(Af ) (1 ⩽ j ⩽ h) are such that

Oξ
1(Q)\Oξ

1(Af )/K
ξ∗
1 = {ū1, . . . , ūh} and

eξ(j) = #[Oξ
1(Q) ∩ uj Kξ∗

1 u−1
j ], µξ =

h∑
j=1

eξ(j)
−1.

Next we introduce an Eisenstein series on Oξ(A). Let P ξ be the maximal parabolic subgroup
of Oξ stabilizing the vector ε1 up to constant. Then

P ξ(A) =
{[ t ∗ ∗

h0 ∗
t−1

]
∈ Oξ(A) | t ∈ A×, h0 ∈ Oξ

1(A)
}
.

Let Kξ∗
p := K∗

p ∩ Oξ(Qp) for p < ∞, and Kξ
∞ be a maximal compact subgroup of Oξ(R)

stabilizing ξ up to constants; set Kξ∗ :=
∏

pK
ξ∗
p Kξ

∞. By means of the Iwasawa decomposi-

tion Oξ(A) = P ξ(A)Kξ, we define a function f (s) on Oξ(A) as f (s) (h) := f(h0) |t|
s+m−1

2
A for

h =
[ t ∗ ∗

h0 ∗
t−1

]
∈ P ξ(A) and k ∈ Kξ∗. Then the Eisenstein series relevant to our purpose is

EOξ

P ξ (f, s;h) :=
∑

γ∈P ξ(Q)\Oξ(Q)

f (s)(γh), h ∈ Oξ(A),

which is convergent on Re(s) > (m − 1)/2. By Murase-Sugano [13], the Euler product
L(f, s) =

∏
p Lp(f, s) (Re(s) > (m − 1)/2) is defined in such a way that the local p-factor

Lp(f, s) when (L ξ
1 )

∨
Zp

= (L ξ
1 )Zp coincides with the common definition á la Langlands;

then it is proved that L(f, s) has a meromorphic continuation to C in such a way that the
completed L-function Λ(f, s) := Γ

L ξ
1
(s)× L(f, s) with the gamma-factor being

Γ
L ξ

1
(s) =

(m−1)/2∏
j=1

ΓC(s− j + (m− 1)/2) {#((L ξ
1 )

∨/L ξ
1 )}

s/2

satisfies the functional equation Λ(f, 1 − s) = Λ(f, s) and admits possible poles only at
s = m−1

2 − j (j ∈ [0,m− 2]); in particular, Λ(f, s) has a possible simple pole at s = 1 when
m is odd. From this result, they deduced the meromorphic continuation and the functional

equation ÊOξ

P ξ (f,−s;h) = ÊOξ

P ξ (f, s;h) for the normalized Eisenstein series

ÊOξ

P ξ (f, s;h) := Λ(f,−s)EOξ

P ξ (f, s;h). (3.1)

3.1.1 Integral representation of L-function

Let F ∈ Sl be a joint eigenfunction of the Hecke algebras H +
p for all p <∞. Let L(F, s) =∏

p<∞ Lp(F, s) be the Euler product defined by Murase-Sugano ([13]). Set

ΓL ,l(s) := ΓC(s−m/2 + l)

(m−1)/2∏
j=1

ΓC(s+m/2− j) {2−1#(L ∨/L )}s/2

and Λ(F, s) := ΓL ,l(s)L(F, s), the completed L-function of F . Let FO denote the function
of O(A) defined by FO(g∞gf ) = J(g∞, z0)

−lF (g∞⟨z0⟩, gf ) for g∞ ∈ O(R) and gf ∈ O(Af ).
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The following identity is partly due to Andrianov ([1], [2]) and Sugano ([19], [20]) and is
stated in this form in [15]:∫

Oξ(Q)\Oξ(A)
ÊOξ

P ξ (f, s− 1/2;h)FO(h bξ∞) dh = Cξ
l a

f
F (ξ) Λ(F, s) (Re(s) ≫ 0),

where bξ∞ ∈ O1(R) is an element such that bξ∞(
ε′0−ε0√

2
) = |Q(ξ)|−1/2ξ, and Cξ

l is a positive

constant which can be explicitly described once the normalization of Haar measure on Oξ(A)
is fixed. Suppose afF (ξ) ̸= 0 for some ξ and f ; then Λ(F, s) has a meromorphic continuation
to C satisfying the functional equation Λ(F, 1 − s) = Λ(F, s) with possible poles only at
s = m/2− j (0 ⩽ j ⩽ m− 1); in particular, L(F, s) is regular at s = 1/2. When m is odd,
the center of the functional equation s = 1/2 is a (unique) critical point of the L-function
L(F, s).

3.2 Statement of the main result

Let the notation and the assumptions be as before; in particular ξ satisfies three conditions
(a), (b) and (c). Let U be an irreducible Oξ

1(Af )-subrepresentation of L2(Oξ
1(Q)\Oξ

1(Af ))

such that the space of Kξ∗
1 -fixed vectors U (Kξ∗

1 ) in U is not zero.

Lemma 3.1. Suppose 2ξ ∈ L1.
(1) For each prime p, let rξp be the reflection of L1,Qp with respect to ξ. Then,

(rξp)p<∞ ∈ hξf K
∗
1 for some hξf ∈ Oξ

1(Af ).

(2) There exists an involutive operator τ ξf on U (Kξ∗
1 ) such that

τ ξf (f)(h) = f(hhξf ), f ∈ U (Kξ∗
1 )

for any hξf ∈ Oξ
1(Af ) as in (1).

(3) The involution τ ξf commutes with all the Hecke operators from (H ξ
1,p)

+ (p < ∞).

There exists an orthonormal basis B(U ;Kξ∗
1 ) of U (Kξ∗

1 ) which diagonalizes the action

of ⟨(H ξ
i,p)

+ (p <∞), τ ξf ⟩.

Set B
(±1)
U := {f ∈ B(U ;Kξ∗

1 ) | τ ξf (f) = ±f}. For F ∈ Sl and f ∈ U (Kξ∗
1 ), we define2

Af
F (ξ) :=

(4π
√
−2Q[ξ])−l+m

2 Γ(2l − m−1
2 )1/2 afF (ξ)

∥f∥ ∥F∥
,

where

∥f∥2 = µ−1
ξ

h∑
j=1

|f(uj)|2

eξ(j)
, ∥F∥2 =

∫
O(Q)+\(D×O(Af ))

|F (z, gf )|2 dµD(z) dgf .

Theorem 3.2. Suppose ξ satisfies 2ξ ∈ L1 as well as conditions (a), (b) and (c). Let
ε ∈ {±1} be such that #(Bε

U ) ̸= ∅. Then, there exists C > 1 such that, as l → ∞ with
(−1)l = ε,

Γ̃(l)

lm

∑
F∈Fl

1

#(Bε
U )

∑
f∈Bε

U

L(F, 1/2) |Af
F (ξ)|

2 = BL (ξ)L(U , s)|∗s=1 +O(C−l),

2The quantity Af
F (ξ) should be viewed as an analogue of Aϕ(1) considered in §1.
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where L(U , s)|∗s=1 denotes the leading Laurent coefficient of L(U , s) (:=L(f, s) for any
f ∈ B(U ;K∗

L ξ
1

)) at s = 1, where Fl is any orthonormal basis of Sl consisting of Hecke

eigen forms, and

Γ̃(l) :=
lm Γ(l − m

2 ) Γ(l −m+ 1)

Γ(l − m−1
4 ) Γ(l − m−3

4 )
, BL (ξ) := 16 (2−1d(L ))−

1
2
(
π
4

)−m−1
2 .

Remark. We have Γ̃(l) = 1 + O(l−1) as l → ∞. Note that #(Fl) = dimC(Sl) ≍ lm and
m = dimC D .

Let S be a finite set of prime numbers such that p ∈ S is relatively prime to #(L ∨
1 /L1)

and Q(ξ). For p ∈ S, choose a maximal set of isotropic vectors (ej)
rp
j=1 and (e′j)

rp
j=1 in LZp

satisfying (ei, e
′
j) = δij and LZp =

⊕rp
j=1(Zpej + Zpe

′
j) ⊕ M (Witt decomposition) with

M := {X ∈ LZp | (X, ej) = (X, e′j) = 0 (∀j ∈ [1, rp]}. Let Bp be the Borel subgroup of
O(Qp) stabilizing the isotropic flag {Fj := ⟨e1, . . . , ej⟩Qp | j ∈ [1, rp]}. Then, O(Qp) = BpKp

(Iwasawa decomposition) holds. For g ∈ O(Qp), a coset b(g) ∈ Bp/Bp ∩Kp is well-defined
by the relation g ∈ b(g)Kp. Let Tp be the maximal Qp-split torus of O(Qp) such that there
exist Qp-rational characters χj : Tp → Q×

p satisfying t(ej) = χj(t)ej , t(e
′
j) = χj(t)

−1e′j for all
j ∈ [1, rp] and t(X) = X for all X ∈ M . Since Tp is a Levi subgroup of Bp, each χj is viewed
as a character of Bp by the natural surjection Bp → Tp. Set Xp := (C/2π(log p)−1Z)rp ; by
identifying Xp with the space of continuous characters of Tp trivial on Tp ∩ Kp, we have
a natural action of the Weyl group Wp of (Tp, O(Qp)) on Xp. For ν = (νj)

rp
j=1 ∈ Xp, let

ων : O(Qp) → C be the zonal spherical function of Satake parameter ν, which is defined by

ων(g) :=

∫
Kp

rp∏
j=1

|χj(b(g))|
νj+ρj
p dk, g ∈ O(Qp).

By [18], the map ν 7→ ων yields a bijection from Xp/Wp onto the set of zonal spherical
functions on O(Qp). Let X

0+
p ⊂ Xp denote the locus of zonal spherical functions of positive

type. For ν ∈ X0+
p , let πO(Qp)(ν) denote the smooth spherical representation generated by

the right-translations of the function ων on O(Qp); it is known that πO(Qp)(ν) is irreducible
and unitarizable ([4]). Let Hp denote the Hecke algebra for (O(Qp),Kp), which is the same

as H +
p due to L ∨

Zp
= LZp . For ϕ ∈ Hp, its spherical Fourier transform ϕ̂ : Xp → C is

defined by

ϕ̂(ν) :=

∫
G(Qp)

ϕ(g)ω−ν(g) dg, g ∈ O(Qp),

where dg is the unique Haar measure on O(Qp) such that vol(Kp) = 1. Then it is known
that there exists a Radon measure µPlp (Plancherel measure) on [X0+

p ] := X0+/Wp such that

ϕ(g) =

∫
[X0+

p ]
ϕ̂(ν)ων(g) dµ

Pl
p (ν), ϕ ∈ Hp.

Since #(L ∨
1 /L1) = |Q(ξ)|−1#((L ξ

1 )
∨/L ξ

1 ), we have (L ξ
1 )

∨
Zp

= (L ξ
1 )Zp for p ∈ S. Thus,

in the same way, we have the space [X0+
p (ξ)] of Satake parameters for zonal spherical func-

tions on Oξ
1(Qp) of positive type, the spherical representation πO

ξ
1(Qp)(z) of Oξ

1(Qp) for
z ∈ [X0+

p (ξ)]. Let U ∼=
⊗

p Up be a restricted tensor decomposition of U to irreducible

smooth representations Up of Oξ
1(Qp). Since U ⊂ L2(Oξ

1(Q)\Oξ
1(Af )) and U (Kξ∗

1 ) ̸= {0},
each Up for p ∈ S is unitarizable and spherical. As such, Up for p ∈ S is isomorphic to

πO
ξ
1(Qp)(zp) with zp ∈ [X0+

p (ξ)] being the Satake parameter of Up. We say that U is tempered

at p ∈ S, if zp is purely imaginary. Set [X0+
S ] :=

∏
p∈S [X

0+
p ] and [X0+

S (ξ)] :=
∏

p∈S [X
0+
S (ξ)].
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Theorem 3.3. Suppose 2ξ ∈ L1. Let ε ∈ {±1} be such that Bε
U ̸= ∅. Let S be a finite set

of prime numbers such that p ∈ S is relatively prime to #(L ∨/L ) and Q(ξ). Suppose Up

is tempered at all p ∈ S. Let ϕS = ⊗p∈Sϕp be an element of
⊗

p∈S Hp.

• ϕ̂S :=
∏

p∈S ϕ̂p ∈ Cc([X
0+
S ]) : the spherical Fourier transformation of ϕS = ⊗p∈Sϕp.

• νS(F ) := {νp(F )}p∈S ∈ [X0+
S ] : the Satake parameter of F at S.

• a(U ) := −ords=1L(U , s) ∈ {0, 1}.

Then, as l → ∞ with (−1)l = ε,

1

(log l)a(U )

Γ̃(l)

lm

∑
F∈Fl

1

#(Bε
U )

∑
f∈Bε

U

L(F, 1/2) |Af
F (ξ)|

2ϕ̂S(νS(F ))

−→ BL (ξ)L(U , s)|∗s=1 Λ
US (ϕ̂S),

where, ΛU is a linear functional on Cc([X
0+
S ]) such that the value ΛU (α) at α = ⊗p∈Sαp is

∏
p∈S

∏(m+1)/2
j=1 ζp(2j)

L(1, πHp (zp); Ad)L(1, πHp (zp))

∫
[X0+

p ]
αp(ν)

L
(
1
2 , π

H
p (zp)⊠ πGp (ν)

)
L
(
1
2 , π

G
p (ν)

)
L(1, πGp (ν); Ad)

dµPlp (ν),

where we set H = Oξ
1(Qp) and G = O(Qp) and zp ∈ [X0+

p (ξ)] is the Satake parameter of Up

at p ∈ S.

4 Overview of proofs

Our method is based on a computation of a Fourier integral of a deliverately designed
Poincaré series. Contrary to [3] and [24], and in a similar spirit to [11], neither Petersson-
Kitaoka’s formula nor the approximate functional equation is used. The most novel part
in the definition of our Poincaré series is the usage of the archimedean Shintani function
Φξ
l (s) : O(R) → C, which is a smooth function on O(R) defined by the formula

Φξ
l (s, g∞) := (−1)l2−(s+m−1

2
)A(g∞)−l

{
i sgn

(
ImB(g∞)

A(g∞)

)
B(g∞)
A(g∞)

}−(s+m−1
2

)
, g∞ ∈ O(R),

where
A(g∞) := |Q(ξ)|−1/2(ξ, g(vC0 )), B(g∞) := (ε1, g(v

C
0 ))

with vC0 :=
ε0−ε′0√

2
+ i

−ε1+ε′1√
2

∈ LC (see [21, §4], [22, §4.1]). It turns out that Φ = Φξ
l (s) is a

unique C∞-function on O(R) that satisfies the conditions:

• Φ(g∞k) = J(k, z0)
−lΦ(g∞), k ∈ K∞,

• J(g∞, z0)
lΦ(g∞) on O(R)0/K∞ ∼= D is holomorphic,

• Φ(hg∞) = |t|s+
m−1

2 Φ(g∞), h =
[
t ∗ ∗
l ∗
t−1

]
∈ P ξ(R),

• Φ(bξ∞) = 1.
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We remark that the unramified Shintani funcions over p-adic fields ([14]) played an important
role in the formulation of the refined Gan-Gross-Prasad conjecture (or the Ichino-Ikeda
conjecture) originally due to [9] (see also [12]). For a Hecke function ϕS ∈

⊗
p∈S Hp,

let ϕ denote the function on O(Af ) defined as ϕ(g) =
∏

p∈S ϕp(gp)
∏

p̸∈S 1lK∗
p
(gp) for g =

(gp)p<∞ ∈ O(Af ). Then set

Φf (ϕS ; gf ) :=

∫
Oξ(Af )

f (s)(h)ϕ(h−1gf ) dh, gf ∈ O(Af ),

where f (s) is the function used to define the Eisenstein series EOξ

P ξ (f, s) associated to the

Hecke eigenfunction f on Oξ
1(Q)\Oξ

1(Af ). Define a smooth function Φξ
l (ϕS |s) on O(A) by

Φf,ξ
l (ϕS |s; g∞gf ) := Φξ

l (s; g∞)Φf (ϕS ; gf ), g∞gf ∈ O(R)O(Af ).

Choose an entire function β(s) on C such that for any compact set I ⊂ R and for any N > 0
the estimation eπ|t|β(σ + it) ≪I,N (1 + |t|)−N holds for σ ∈ I and t ∈ R, and set

Φ̂f,ξ
l (ϕS |β, g) :=

∫ c+i∞

c−i∞
β(s)D∗(s)Λ(f,−s)Φf,ξ

l (ϕS |s; g) ds,

where D∗(s) :=
∏

j∈[0,m−1]−{m−1
2

}(s −
m−1
2 + j), which is introduced to kill the possible

poles of Λ(f, s), the normalizing factor of the Eisenstein series (cf. (3.1)). Now, our adelic
Poincaré series is defined by the infinite sum

F̂f,ξ
l (ϕS |β; g) :=

∑
γ∈P ξ(Q)\O(Q)

Φ̂f,ξ
l (ϕS |β, g), g ∈ O(A),

which is shown to be absolutely and normally convergent on O(A) yielding a cusp form in
Sl for l ≫ 1. Moreover, its spectral expansion in terms of an orthonormal basis Fl of Sl is
given as

F̂f,ξ
l (ϕS |β; g)

=

∫ c+i∞

c−i∞
β(s)

−2π
m
2 Γ
(
m
2

)−1
Cξ
l B

ξ
l (s)

∑
F∈Fl

D∗(s)L
(
F, s̄+ 1

2

)
af̄F (ξ)λF (ϕ)F (g)

ds,

(4.1)

where Bξ
l (s) is an entire function studied in [21, §4 (Proposition 30)]. We deduce a trace-

formula-like identity by computing the integral (= Fourier-Bessel integral)∫
Oξ

1(Q)\Oξ
1(Af )

f̄(h0) dh

∫
L1,Af

F̂f,ξ
l

(
ϕS |β;

[
1 −tQX −2−1Q(X)

l X
1

] [ r 0 0
h0 0

r−1

]
bξ∞

)
ψ((ξ,X))−1dX

in two ways. We use the spectral expansion in (4.1) to relate this integral to the weighted
average of the L-functions in Theorems 3.2 and 3.3. We invoke Liu’s computation ([12]) of
local period of zonal spherical functions to compute the main term in the geometric side
(see [22, §5.2]). To deduce Theorems 2.1 and 2.2, we specialize the asymptotic formulas in
Theorems 3.2 and 3.3 to the setting

L :=
{
Y =

[
X −x′w

x′′w tX

]
|X ∈ Z3, x′, x′′ ∈ Z

}
∼= Z5, Q(Y ) := 1

2 det(Y
2), Y ∈ L

with w =
[

0 1
−1 0

]
, and transcribe the formula in the language of Siegel modular forms through

the exceptional isomorphism ρ : PGSp2 → SO(Q) defined by ρ(g)Y = gY g−1.
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