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Abstract

Let m be a positive integer, and let p be a prime with p ≡ 1 (mod 4). Then we
show that the exponential Diophantine equation (3pm2 − 1)x + (p(p − 3)m2 + 1)y =
(pm)z and (12m2 + 1)x + (13m2 − 1)y = (5m)z have only the positive integer solution
(x, y, z) = (1, 1, 2) under some conditions, respectively. As a corollary, we derive that
the exponential Diophantine equation (15m2 − 1)x + (10m2 +1)y = (5m)z has only the
positive integer solution (x, y, z) = (1, 1, 2). The proof is based on elementary methods
and Baker’s method.

1 Introduction

Let a, b, c be fixed relatively prime positive integers greater than one. The exponential
Diophantine equation

ax + by = cz (1.1)

in positive integers x, y, z has been actively studied by a number of authors. This field has a
rich history. Using elementary methods such as congruences, the quadratic reciprocity law
and the arithmetic of quadratic (or cubic) fields, we can completely solve most of equation
(1.1) for small values of a, b, c. (cf. Nagell[N], Hadano[H] and Uchiyama[U].) It is known
that the number of solutions (x, y, z) is finite, and all solutions can be effectively determined
by means of Baker’s method for linear forms in logarithms.

In 1956, Sierpiński[S1] showed that the equation 3x + 4y = 5z has only the positive
integer solution (x, y, z) = (2, 2, 2). Jeśmanowicz[J] proved that the only positive integer
solution of each of the equations

5x + 12y = 13z, 7x + 24y = 25z, 9x + 40y = 41z, 11x + 60y = 61z

is given by (x, y, z) = (2, 2, 2), and proposed the following conjecture concerning primitive
Pythagorean triples:

Conjecture 1.1 (Jeśmanowicz’ Conjecture). Let m,n be relatively prime positive integers
with m ̸≡ n (mod 2) and m > n. Then the exponential Diophantine equation

(m2 − n2)x + (2mn)y = (m2 + n2)z

has only the positive integer solution (x, y, z) = (2, 2, 2).

This is one of famous unsolved problems in the field of exponential Diophantine equa-
tions. Conjecture 1.1 has been verified to be true in many special cases:

• n = 1 (Lu[Lu], 1959), m− n = 1 (Demjanenko[D], 1965)

• m2 − n2 ≡ ±1 (mod 2mn), m2 + n2 ≡ 1 (mod 2mn) (Miyazaki[M2], 2013)

• n = 2 (Teari[T3], 2014), n ≡ 2 (mod 4) and n < 100 (Miyazaki-Terai[MT2], 2015)
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As an analogue of Jeśmanowicz’ conjecture, the author proposed the following conjecture:

Conjecture 1.2 (Generalized Jeśmanowicz’ conjecture: Terai’s Conjecture). Let a, b, c, p,
q, r be fixed positive integers satisfying ap + bq = cr with p, q, r ≥ 2 and gcd(a, b) = 1. Then
the exponential Diophantine equation

ax + by = cz

has only the positive integer solution (x, y, z) = (p, q, r) except for three cases (taking a < b),
where the equation has only the following solutions, respectively:

(a, b, c) = (2, 2k − 1, 2k + 1), (x, y, z) = (1, 1, 1), (k + 2, 2, 2),

(a, b, c) = (2, 7, 3), (x, y, z) = (1, 1, 2), (5, 2, 4);

(a, b, c) = (1, 2, 3), (x, y, z) = (m, 1, 1), (n, 3, 2);

where m, n are arbitrary and k is a positive integer with k ≥ 2.

Conjecture 1.2 has been proved to be true in many cases. This conjecture, however, are
still unsolved. (cf. [C], [M1], [T1].)

In the previous paper Terai[T2], the first author showed that if m is a positive integer
with 1 ≤ m ≤ 20 or m ̸≡ 3 (mod 6), then the Diophantine equation

(4m2 + 1)x + (5m2 − 1)y = (3m)z (1.2)

has only the positive integer solution (x, y, z) = (1, 1, 2). The proof is based on elementary
methods and Baker’s method. Su-Li[SL] proved that if m ≥ 90 and m ≡ 3 (mod 6), then
equation (1.2) has only the positive integer solution (x, y, z) = (1, 1, 2) by means of the result
of Bilu-Hanrot-Voutier [BHV] concerning the existence of primitive prime divisors in Lucas-
numbers. Recently, Bertók has completely solved the remaining cases that 20 < m < 90
and m ≡ 3 (mod 6) via the help of exponential congruences. (cf. Bertók-Hajdu [BH].) In
[MT1], we also showed that the Diophantine equations

(m2 + 1)x + (cm2 − 1)y = (am)z with 1 + c = a2,

have only the positive integer solution (x, y, z) = (1, 1, 2) under some conditions, respectively.
Moreover, Fu-Yang[FY] has recently shown that if p + q = r2, r|m, m > 36r3 log r, then
the Diophantine equation

(pm2 + 1)x + (qm2 − 1)y = (rm)z,

have only the positive integer solution (x, y, z) = (1, 1, 2).
In this paper, we consider the exponential Diophantine equations

(3pm2 − 1)x + (p(p− 3)m2 + 1)y = (pm)z (1.3)

(12m2 + 1)x + (13m2 − 1)y = (5m)z (1.4)

with m positive integer and p prime . Our main results are the following:

Theorem 1.1. Let m be a positive integer with m ̸≡ 0 (mod 3). Let p be a prime with
p ≡ 1 (mod 4). Moreover, suppose that if m ≡ 1 (mod 4), then p < 3784. Then equation
(1.3) has only the positive integer solution (x, y, z) = (1, 1, 2).

Theorem 1.2. Let m be a positive integer with m ̸≡ 17, 33 (mod 40). Then equation (1.4)
has only the positive integer solution (x, y, z) = (1, 1, 2).
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In particular, for p = 5, we can completely solve equation (1.3) without any assumption
on m. The proof is based on applying a result on linear forms in p-adic logarithms due to
Bugeaud [Bu] to equation (1.3) with m ≡ 0 (mod 3).

Corollary 1.1. Then the exponential Diophantine equation

(15m2 − 1)x + (10m2 + 1)y = (5m)z (1.5)

has only the positive integer solution (x, y, z) = (1, 1, 2).

2 Preliminaries

In order to obtain an upper bound for a solution y of Pillai’s equation cz − by = a under
some conditions, we need a result on lower bounds for linear forms in the logarithms of two
algebraic numbers. We will introduce here some notations. Let α1 and α2 be real algebraic
numbers with |α1| ≥ 1 and |α2| ≥ 1. We consider the linear form

Λ = b2 logα2 − b1 logα1,

where b1 and b2 are positive integers. As usual, the logarithmic height of an algebraic number
α of degree n is defined as

h(α) =
1

n

log |a0|+
n∑

j=1

logmax
{
1, |α(j)|

} ,

where a0 is the leading coefficient of the minimal polynomial of α (over Z) and (α(j))1≤j≤n

are the conjugates of α. Let A1 and A2 be real numbers greater than 1 with

logAi ≥ max

{
h(αi),

| logαi|
D

,
1

D

}
,

for i ∈ {1, 2}, where D is the degree of the number field Q(α1, α2) over Q. Define

b′ =
b1

D logA2
+

b2
D logA1

.

We choose to use a result due to Laurent [[L], Corollary 2] with m = 10 and C2 = 25.2.

Proposition 1 (Laurent[L]). Let Λ be given as above, with α1 > 1 and α2 > 1. Suppose
that α1 and α2 are multiplicatively independent. Then

log |Λ| ≥ −25.2D4

(
max

{
log b′ + 0.38,

10

D

})2

logA1 logA2.

Next, we shall quote a result on linear forms in p-adic logarithms due to Bugeaud [Bu].
Here we consider the case where y1 = y2 = 1 in the notation from [Bu, p.375].

Let p be an odd prime. Let a1 and a2 be non-zero integers prime to p. Let g be the least
positive integer such that

ordp(a
g
1 − 1) ≥ 1, ordp(a

g
2 − 1) ≥ 1,

where we denote the p-adic valuation by ordp( · ). Assume that there exists a real number
E such that

1/(p− 1) < E ≤ ordp(a
g
1 − 1).
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We consider the integer
Λ = ab11 − ab22 ,

where b1 and b2 are positive integers. We let A1 and A2 be real numbers greater than 1
with

logAi ≥ max{log |ai|, E log p} (i = 1, 2),

and we put b′ = b1/ logA2 + b2/ logA1.

Proposition 2 (Bugeaud [Bu]). With the above notation, if a1 and a2 are multiplicatively
independent, then we have the upper estimate

ordp(Λ) ≤
36.1g

E3(log p)4
(
max{log b′ + log(E log p) + 0.4, 6E log p, 5}

)2
logA1 logA2.

3 Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1.
Let (x, y, z) be a solution of (1.3). Taking (1.3) modulo p implies that (−1)x + 1 ≡

0 (mod p). Hence x is odd.

3.1 the case where m is even

Using a congruence method, we ca easily show that if m is even, then equation (1.3) has
only the positive integer solution (x, y, z) = (1, 1, 2).

Lemma 3.1. If m is even, then equation (1.3) has only the positive integer solution
(x, y, z) = (1, 1, 2).

Proof. If z ≤ 2, then (x, y, z) = (1, 1, 2) from (1.3). Hence we may suppose that z ≥ 3.
Taking (1.3) modulo m3 implies that

−1 + 3pm2x+ 1 + p(p− 3)m2y ≡ 0 (mod m3),

so
3px+ p(p− 3)y ≡ 0 (mod m),

which is impossible, since x is odd and m is even. We therefore conclude that if m is even,
then equation (1.3) has only the positive integer solution (x, y, z) = (1, 1, 2).

3.2 the case where m is odd with m ̸≡ 0 (mod 3)

Lemma 3.2. If m is odd with m ̸≡ 0 (mod 3), then x = 1.

Proof. Suppose that x ≥ 2. We show that this will lead to a contradiction. The proof is
devided into two cases: Case 1: m ≡ 1 (mod 4), Case 2: m ≡ 3 (mod 4).
Case 1: m ≡ 1 (mod 4). Then, taking (1.3) modulo 4 implies that 3y ≡ 1 (mod 4), so y is
even.

On the other hand, taking (1.3) modulo 3, together with our assumption m ̸≡ 0 (mod 3),
implies that

(−1)x + (−1)y ≡ (pm)z ̸≡ 0 (mod 3), (3.1)

which contradicts the fact that x is odd and y is even. Hence we obtain x = 1.
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Case 2: m ≡ 3 (mod 4). Then

(
3pm2 − 1

p(p− 3)m2 + 1

)
= 1 and

(
pm

p(p− 3)m2 + 1

)
= −1,

where
(∗
∗

)
denotes the Jacobi symbol. Indeed,

(
3pm2 − 1

p(p− 3)m2 + 1

)
=

(
3pm2 + p(p− 3)m2

p(p− 3)m2 + 1

)
=

(
p2m2

p(p− 3)m2 + 1

)
= 1

and (
pm

p(p− 3)m2 + 1

)
=

(
p

p(p− 3)m2 + 1

)(
m

p(p− 3)m2 + 1

)
= −

(
p(p− 3)m2 + 1

p

)(
p(p− 3)m2 + 1

m

)
= −1,

since m ≡ 3 (mod 4) and p ≡ 1 (mod 4). In view of these, z is even from (1.3).
Taking (1.3) modulo 4 implies that 3y ≡ (pm)z ≡ 3z ≡ 1 (mod 4), since z is even. Hence

y is even. Similarly, (3.1) also leads to a contradiction. We therefore obtain x = 1.

3.3 Pillai’s equation cz − by = a

From Lemma 3.2, it follows that x = 1 in (1.3), provided that m is odd with m ̸≡ 0 (mod 3).
If y ≤ 2, then we obtain y = 1 and z = 2 from (1.3). From now on, we may suppose that
y ≥ 3. Hence our theorem is reduced to solving Pillai’s equation

cz − by = a (3.2)

with y ≥ 3, where a = 3pm2 − 1, b = p(p− 3)m2 + 1 and c = pm.
We now want to obtain a lower bound for y.

Lemma 3.3. y > m2 − 2.

Proof. Since y ≥ 3, equation (3.2) yields the following inequality:

(pm)z ≥ 3pm2 − 1 + (p(p− 3)m2 + 1)3 > (pm)3.

Hence z ≥ 4. Taking (3.2) modulo p2m4 implies that

3pm2 − 1 + 1 + p(p− 3)ym2 ≡ 0 (mod p2m4),

so 3 + (p− 3)y ≡ 0 (mod pm2). Hence we have

y ≥ 1

p− 3
(pm2 − 3) =

p

p− 3
m2 − 3

p− 3
> m2 − 2,

as desired.

We next want to obtain an upper bound for y.

Lemma 3.4. y < 2521 log c.
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Proof. From (3.2), we now consider the following linear form in two logarithms:

Λ = z log c− y log b (> 0).

Using the inequality log(1 + t) < t for t > 0, we have

0 < Λ = log(
cz

by
) = log(1 +

a

by
) <

a

by
. (3.3)

Hence we obtain
log Λ < log a− y log b. (3.4)

On the other hand, we use Proposition 1 to obtain a lower bound for Λ. It follows from
Proposition 1 that

log Λ ≥ − 25.2
(
max

{
log b′ + 0.38, 10

})2
(log b) (log c), (3.5)

where b′ =
y

log c
+

z

log b
.

We note that by+1 > cz. Indeed,

by+1−cz = b(cz−a)−cz = (b−1)cz−ab ≥ p(p−3)m2 ·p2m2−(3pm2−1)(p(p−3)m2+1) > 0.

Hence b′ <
2y + 1

log c
.

Put M =
y

log c
. Combining (3.4) and (3.5) leads to

y log b < log a+ 25.2

(
max

{
log

(
2M +

1

log c

)
+ 0.38, 10

})2

(log b) (log c),

so
M < 1 + 25.2 (max {log (2M + 1) + 0.38, 10})2 ,

since log c = log(pm) ≥ log 5 > 1. We therefore obtain M < 2521. This completes the proof
of Lemma 3.4.

We are now in a position to prove Theorem 1.1. It follows from Lemmas 3.3, 3.4 that

m2 − 2 < 2521 log(pm). (3.6)

We want to obtain an upper bound for p and then one for m. We first show that if
m ≡ 3 (mod 4), then p < 3784. Recall that z is even for the case m ≡ 3 (mod 4), as seen
in the proof of Lemma 3.2. Put z = 2Z with Z positive integer. Now equation (3.2) can be
written as

(c2)Z − by = c2 − b.

Then y ≥ Z. If y = Z, then we obtain y = Z = 1. If y > Z, then we consider a “gap”
between the trivial solution (y, Z) = (1, 1) and (possible) another solution (y, Z).

From a+ b = c2 and a+ by = c2Z , consider

Λ0 = 2 log c− log b (> 0), Λ = 2Z log c− y log b (> 0).

Then
yΛ0 − Λ = 2(y − Z) log c ≥ 2 log c,
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so

y >
2

Λ0
log c.

By Lemma 3.4, we have
2

Λ0
log c < 2512 log c. Hence

2

2521
< Λ0 = log

(
c2

b

)
= log

(
1 +

a

b

)
<

a

b

=
3pm2 − 1

p(p− 3)m2 + 1
<

3pm2

p(p− 3)m2
=

3

p− 3
.

Consequently we obtain p < 3784. When m ≡ 1 (mod 4),we could not prove that z is even
in Lemma 3.2. We therefore suppose that if m ≡ 1 (mod 4), then p < 3784. In any case,
(3.6) yields m ≤ 183.

From (3.3), we have the inequality∣∣∣∣ log blog c
− z

y

∣∣∣∣ < a

yby log c
,

which implies that

∣∣∣∣ log blog c
− z

y

∣∣∣∣ < 1

2y2
, since y ≥ 3. Thus

z

y
is a convergent in the simple

continued fraction expansion to
log b

log c
.

On the other hand, if
pr
qr

is the r-th such convergent, then

∣∣∣∣ log blog c
− pr

qr

∣∣∣∣ > 1

(ar+1 + 2)q2r
,

where ar+1 is the (r + 1)-st partial quotient to
log b

log c
(see e.g. Khinchin [K]). Put

z

y
=

pr
qr

.

Note that qr ≤ y. It follows, then, that

ar+1 >
by log c

ay
− 2 ≥ bqr log c

aqr
− 2. (3.7)

Finally, we checked by Magma [BC] that for each p < 3784 with p ≡ 1 (mod 4), inequality
(3.7) does not hold for any r with qr < 2521 log(pm) in the range 3 ≤ m ≤ 183. This
completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

We can show Theorem 1.2 in the same way as in the proof of Theorem 1.1.

4.1 the case m ̸≡ 0 (mod 5)

We easily obtain the following two lemmas by elementary methods.

Lemma 4.1. If m is even, then equation (1.4) has only the positive integer solution
(x, y, z) = (1, 1, 2).

Lemma 4.2. If m is odd and m ̸≡ 17, 33 (mod 40), then y = 1 and x is odd.
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By the congruence methods, we obtain a lower bound for x.

Lemma 4.3. x ≥ 1

12
(m2 − 13).

By Baker’s method, We also obtain an upper bound for x.

Lemma 4.4. x < 2521 log c.

We are now in a position to prove Theorem 1.2. It follows from Lemmas 4.3, 4.4 that

1

12
(m2 − 13) < 2521 log 5m.

Hence we obtain m ≤ 485.
From (3.3), we have the inequality∣∣∣∣ log a

log c
− z

x

∣∣∣∣ < b

xax log c
,

which implies that

∣∣∣∣ log a

log c
− z

x

∣∣∣∣ < 1

2x2
, since x ≥ 3. Thus

z

x
is a convergent in the

simple continued fraction expansion to
log a

log c
.

On the other hand, if
pr
qr

is the r-th such convergent, then∣∣∣∣ log a

log c
− pr

qr

∣∣∣∣ > 1

(ar+1 + 2)q2r
,

where ar+1 is the (r+1)-st partial quotient to
log a

log c
(see e.g. Khinchin [K]). Put

z

x
=

pr
qr

.

Note that qr ≤ x. It follows, then, that

ar+1 >
ax log c

bx
− 2 ≥ aqr log c

bqr
− 2. (4.1)

Finally, we checked by Magma [BC] that inequality (4.1) does not hold for any r with
qr < 2521 log(5m) in the range 3 ≤ m ≤ 485.

4.2 the case m ≡ 0 (mod 5)

Let m be a positive integer with m ≡ 0 (mod 5). Let (x, y, z) be a solution of (1.4). Taking
(1.4) modulo m(> 3), we see that y is odd. Here, we apply Proposition 2. For this we set
p := 5, a1 := 12m2 + 1, a2 := 1− 13m2, b1 := x, b2 := y, and

Λ := (12m2 + 1)x − (1− 13m2)y.

Then we may take g = 1, E = 2, A1 = 12m2 + 1, A2 := 13m2 − 1. Hence we have

2z ≤ 36.1

8(log 5)4
(
max{log b′ + log(2 log 5) + 0.4, 12 log 5}

)2
log(12m2 + 1) log(13m2 − 1),

where b′ :=
x

log(13m2 − 1)
+

y

log(12m2 + 1)
. Suppose that z ≥ 4. We will observe that this

leads to a contradiction. Taking (1.4) modulo m4, we find

12x+ 13y ≡ 0 (mod m2).
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In particular, we find M := max{x, y} ≥ m2/25. Therefore, since z ≥ M and b′ ≤ M
logm , we

find

2M ≤ 36.1

8(log 5)4

(
max

{
log

(
M

logm

)
+ log(2 log 5) + 0.4, 12 log 5

})2

× log(12m2 + 1) log(13m2 − 1). (4.2)

If m ≥ 122009, then

2M ≤ 36.1

8(log 5)4

(
log

(
M

logm

)
+ log(2 log 5) + 0.4

)2

log(12m2 + 1) log(13m2 − 1).

Since m2 ≤ 25M , the above inequality gives

2M ≤ 0.7 (logM − log(log 122009) + 1.6)2 log(300M + 1) log(325M − 1).

We therefore obtain M ≤ 3683, which contradicts the fact that M ≥ m2/25 ≥ 595447844.
If m < 122009, then inequality (4.2) gives

2

25
m2 ≤ 251 log(12m2 + 1) log(13m2 − 1).

This implies m ≤ 903. Hence all x, y and z are also bounded. It is not hard to verify by
Magma [BC] that there is no (m,x, y, z) under consideration satisfying (1.4). We conclude
z ≤ 3. In this case, one can easily show that (x, y, z) = (1, 1, 2). This completes the proof
of Theorem 1.2.

Remark. When m ≡ ±2 (mod 5) and m ≡ 1 (mod 8), i.e., m ≡ 17, 33 (mod 40), we could
not prove Lemma 3.2. Hence the condition m ̸≡ 17, 33 (mod 40) is necessary to Theorem
1.2.

5 Proof of Corollary 1.1

Let (x, y, z) be a solution of (1.5). By Theorem 1.1, we may suppose that m ≡ 0 (mod 3).
Recall that x is odd. Here, we apply Proposition 2. For this, we set p := 3, a1 := 10m2 +
1, a2 := 1− 15m2, b1 := y, b2 := x, and

Λ := (10m2 + 1)y − (1− 15m2)x.

Then we may take g = 1, E = 2, A1 = 10m2 + 1, A2 := 15m2 − 1. Hence we have

z ≤ 36.1

8(log 3)4
(
max{log b′ + log(2 log 3) + 0.4, 12 log 3}

)2
log(10m2 + 1) log(15m2 − 1),

where b′ :=
y

log(15m2 − 1)
+

x

log(10m2 + 1)
. Suppose that z ≥ 4. We will observe that this

leads to a contradiction. Taking (1.5) modulo m4, we find

15x+ 10y ≡ 0 (mod m2).

In particular, we find M := max{x, y} ≥ m2/25. Therefore, since z ≥ M and b′ ≤ M
logm , we

find

M ≤ 3.1

(
max

{
log

(
M

logm

)
+ log(2 log 3) + 0.4, 12 log 3

})2

log(10m2 + 1) log(15m2 − 1).

(5.1)

125



If m ≥ 3450, then

M ≤ 3.1

(
log

(
M

logm

)
+ log(2 log 3) + 0.4

)2

log(10m2 + 1) log(15m2 − 1).

Since m2 ≤ 25M , the above inequality gives

M ≤ 3.1 (logM − log(log 3450) + 1.19)2 log(250M + 1) log(375M − 1).

We therefore obtain M ≤ 105186, which contradicts the fact that M ≥ m2/25 ≥ 476100.
If m < 3450, then inequality (5.1) gives

m2

25
≤ 539 log(10m2 + 1) log(15m2 − 1).

This implies m ≤ 2062. Hence all x, y and z are also bounded. It is not hard to verify by
Magma [BC] that there is no (m,x, y, z) under consideration satisfying (1.5). We conclude
z ≤ 3. In this case, one can easily show that (x, y, z) = (1, 1, 2). This completes the proof
of Corollary 1.1.
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[T3] N. Terai, On Jeśmanowicz’ conjecture concerning primitive Pythagorean triples, J.
Number Theory 141 (2014), 316–323.

[TH1] N. Terai and T. Hibino, On the exponential Diophantine equation (12m2 + 1)x +
(13m2 − 1)y = (5m)z, Int. J. Algebra 9 (2015), 261–272.

[TH2] N. Terai and T. Hibino, On the exponential Diophantine equation (3pm2 − 1)x +
(p(p− 3)m2 + 1)y = (pm)z, Period. Math. Hungar. 74 (2017), 227–234.

[U] S. Uchiyama, On the Diophantine equation 2x = 3y + 13z, Math. J. Okayama Uni-
versity 19 (1976), 31–38.

127


