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1 Introduction

For N > 1, hypergeometric Bernoulli numbers By, ([8, 9, 11]) are defined by the generating
function
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is the confluent hypergeometric function with (z)™ = z(z 4+ 1)---(z +n —1) (n > 1) and
(x)(o) = 1. When N =1, B,, = By, are classical Bernoulli numbers defined by
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In addition, hypergeometric Cauchy numbers ¢y, (see [13]) are defined by
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is the Gauss hypergeometric function. When N =1, ¢,, = ¢y, are classical Cauchy numbers
defined by
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Hypergeometric Euler numbers Ey ,, ([18]) are defined by
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where 1 Fy(a; b, ¢; z) is the hypergeometric function defined by
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When N = 0, then E,, = Ey,, are classical Euler numbers.
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On the other hand, L. Carlitz ([1]) introduced analogues of Bernoulli numbers for the
rational function (finite) field K = F,(7"), which are called Bernoulli-Carlitz numbers now.
Bernoulli-Carlitz numbers have been studied since then (e.g., see [2, 3, 5, 10, 19]). According
to the notations by Goss [6], Bernoulli-Carlitz numbers are defined by

x = BC,

ec(r) = Tn)"

Here, ec(z) are the Carlitz exponential defined by
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where D; = [i][i —1]"---[1]""" (i > 1) with Dy = 1, and [i] = T"" —T. The Carlitz factorial
I1(4) is defined by
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for a non-negative integer ¢ with r-ary expansion:
m
i= chr] (0<¢ <r).
j=0

As analogues of the classical Cauchy numbers ¢,, Cauchy-Carlitz numbers CC,, ([12])
are introduced as

r > CCy, o
logo(x) = Tl(n)"
Here, log-(x) is the Carlitz logarithm defined by
o0 /L"z,,,i
toge () = (-1
i=0 !

where L; = [i|[i — 1] ---[1] (# > 1) with Ly = 1.
In addition, we define the Carlitz hyperbolic cosine Cosh¢(x) by
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and the Carlitz hyperbolic cosine Sinhe(z) by
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In [12], Bernoulli-Carlitz numbers and Cauchy-Carlitz numbers are expressed explicitly
by using the Stirling-Carlitz numbers of the second kind and of the first kind, respectively.
These properties are the extensions that Bernoulli numbers and Cauchy numbers are ex-
pressed explicitly by using the Stirling numbers of the second kind and of the first kind,
respectively.
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2 Fundamental properties

For N > 1, define the truncated Bernoulli-Carlitz numbers BC ,, and the truncated Cauchy-
Carlitz numbers CCy 5, by
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and
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respectively. When N = 0, BC,, = BCy,, and CC, = CCy, are the original Bernoulli-

Carlitz numbers and Cauchy-Carlitz numbers, respectively.
For N > 1, define the truncated Euler-Carlitz numbers ECy , by
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When N =0, EC,, = ECy, are the Euler-Carlitz numbers, defined by

x EC, ,
Cosh¢(z) ;H(n)x'

Finally, define the truncated Euler-Carlitz numbers of the second kind EC Ny by
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When N =0, l/?an = l/?ao,n are the Fuler-Carlitz numbers of the second kind, defined by
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We obtain some explicit expressions of the hypergeometric Bernoulli-Carlitz numbers
BCN p, the hypergeometric Cauchy numbers CCly ,, the hypergeometric Bernoulli-Carlitz
numbers FCy , and the hypergeometric Bernoulli-Carlitz numbers EC'y ,, respectively.

Theorem 1. Forn > 1,

n
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Remark. When N = 0, we have
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which is Theorem 4.2 in [10].
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We can express the hypergeometric Bernoulli-Carlitz numbers in terms of the binomial
coeflicients too.

Proposition 1. Forn > 1,
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Remark. When N = 0, we have
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which is Proposition 4.4 in [10].

Next, we shall give an explicit formula for hypergeometric Cauchy-Carlitz numbers.

Theorem 2. Forn > 1,
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Remark. When N = 1, we have
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which is Theorem 3 in [12].

We can express the hypergeometric Cauchy numbers in terms of the binomial coefficients
too.

Proposition 2. Forn > 1,
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We can obtain explicit expressions of the hypergeometric Euler-Carlitz numbers EC ;.

Theorem 3. Forn > 1,
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We can get the form with binomial coefficients.

108



Proposition 3. Forn > 1,
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When N = 0, we have the expression of the Euler-Carlitz numbers EC,.

Corollary 1. Forn > 1, we have
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In a similar manner, we have an explicit expression of the hypergeometric Euler-Carlitz
numbers of the second kind EC y,.

Theorem 4. Forn > 1,
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We can get the form with binomial coefficients. Note that each ¢ takes 0 too in this case.

Proposition 4. Forn > 1,
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___When N = 0, we have the expression of the Euler-Carlitz numbers of the second kind
EC,.

Corollary 2. Forn > 1, we have
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3 Incomplete Stirling-Carlitz numbers

In [12], as analogues of the Stirling numbers of the first kind [}] defined by

(—log(l — t))k i [n} t"

k! - k1 nl

n=0

the Stirling-Carlitz numbers of the first kind [Z] o Wwere introduced by
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As analogues of the Stirling numbers of the second kind {Z} defined by
(e —1)F 2 (ny t"
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n=0
the Stirling-Carlitz numbers of the second kind {Z} o were introduced by

ec(z) F = (n Z"
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By the definition (1), we have
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and

n

{Z}CZO (n=>1), {’::L}C’ZO (n <m) and {n}c:1 (n >0).

On the other hand, in [4, 14, 15, 16], so-called incomplete Stirling numbers of the fist
kind and of the second kind were introduced as some generalizations of the classical Stirling
numbers of the fist kind and of the second kind. One of the incomplete Stirling numbers
is restricted Stirling number, and another is associated Stirling number. Associated Stirling
numbers of the second kind {Z}>m are given by

(er—Em_ﬁx))’“:f:{"} T m=),
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where

When m =1, {Z} = {Z}>1 is the classical Stirling numbers of the second kind. Restricted

Stirling numbers of the second kind {Z}>m are given by

- F > n X
(Em<32! 1) =Z{k}gmﬁ (m > 1).
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When m — oo, {7} ={}} <, Is the classical Stirling numbers of the second kind.
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Associated Stirling numbers of the first kind [Z] -, are given by
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When m = 1, [i] = [{]5,
Stirling numbers of the first kind [Z] >, are given by

is the classical Stirling numbers of the first kind. Restricted

— —a))* . rn x"
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When m — oo, [}] = [}] <, 18 the classical Stirling numbers of the first kind.
Now, we introduce associated Stirling-Carlitz numbers and restricted Stirling-Carlitz
numbers. The partial sum of the Carlitz exponential is denoted by

m x,r,i
1=0
The associated Stirling-Carlitz numbers of the second kind {Z} O > are defined by
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The restricted Stirling-Carlitz numbers of the second kind {Z} c <m are defined by

S I(k) Z {k }C,gm I(n) (3)
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When m =0in (2) or m — oo in (3), {1} = { i }oso = {4 o <o 15 the original Stirling-
Carlitz number of the second kind. The partial sum of the Carlitz logarithm is denoted
by

=0

The associated Stirling-Carlitz numbers of the first kind [Z] ., are defined by
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The restricted Stirling-Carlitz numbers of the first kind [Z} ., are defined by
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k 00
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When m = 0 in (4) or m — oo in (5), [Z}C = [Z]C,zo = [z]c,goo is the original Stirling-
Carlitz number of the first kind.
Due to associated Stirling-Carlitz numbers of the second kind in (2), we can obtain a more
explicit expression of hypergeometric Bernoulli-Carlitz numbers, expressed in Theorem 1 or
Proposition 1.
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Theorem 5. For N > 1 and n > 1, we have

Bernoulli-Carlitz numbers can be expressed in term of the Stirling-Carlitz numbers of

the second kind: ‘
= (~1)7D; n
BC,, = -~ 4
jz[) Ly \r-1fg

([12, Theorem 2]). When N = 0, Theorem 5 is reduced to a different expression of Bernolli-
Carlitz numbers in terms of the Stirling-Carlitz numbers of the second kind.

Corollary 3. Forn > 1, we have

BC, = Ti(n) nl (Zﬁ)m{”}:k}c

Remark. This is an analogue of

B, -y CVGR) ) (i) {n + k:}
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which is a simple formula appeared in [7, 20].

Similarly, due to associated Stirling-Carlitz numbers of the first kind in (4), we can
obtain a more explicit expression of hypergeometric Cauchy-Carlitz numbers, expressed in
Theorem 2 or Proposition 2.

Theorem 6. For N > 1 and n > 1, we have

() St e
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k=1

Cauchy-Carlitz numbers can be expressed in term of the Stirling-Carlitz numbers of the
first kind:

(e 9]

1 n
Ccn_zfj [rj—l]c

j=0
([12, Theorem 1]). When N = 0, Theorem 6 is reduced to a different expression of Cauchy-
Carlitz numbers in terms of the Stirling-Carlitz numbers of the first kind.
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Corollary 4. Forn > 1, we have

Remark. This is an analogue of
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which is Proposition 2 in [12].
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4 Determinant expression of Bernoulli-Carlitz, Cauchy-
Carlitz and Euler-Carlitz numbers

We give a determinant expression of truncated Cauchy-Carlitz numbers.

Theorem 7. For integers N >0 andn > 1,

—ai 1 0
as —aq
CCn,yn =1(n) . L
—al 1
(=1)"ay, as —ai
where N-tlog. (L+rV)
—1)NFlog U+rT) I\ 5%
a = ( ) NY (l > 1)
Liog, (14r)
with

5 {1 ifl=rN*— N (;=0,1,...);
l:

0 otherwise.

We give a determinant expression of truncated Bernoulli-Carlitz numbers.

Theorem 8. For integers N >0 andn > 1,

—d 1 0
dQ —dl .
BCy,, =1I(n) 0o
—-d; 1
(=1)"d, do —di
where Dug?
d=—""1— (1>1)
Dlogr(l+7“N)

with 6 as in (6).
The Euler-Carlitz numbers EC,, also have a similar determinant expression.

Theorem 9. For n >0, we have

—d; 1
do —d;
EC, = H(n) . 1 )
(—1)n_1dn_1 (—1)n_2dn_2 e —dy 1
(-)"dp,  (-1)"ldyy - dy —dy

where 5

d=—7"— (I>1

: DlogT(l+l) ( )
with

5l:

. {1 fl=r%—-1(=01,..);

0 otherwise.
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The Euler-Carlitz numbers of the second kind EE’H also have a similar determinant

expression.

Theorem 10. Forn > 0, we have

where

A*
~ 0 ]

=% (>1
DlogT(H-I) ( )

with

s~ 1 ifl =72+t —1(i=0,1,...);
0 otherwise.
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