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1 Introduction

For N ≥ 1, hypergeometric Bernoulli numbers BN,n ([8, 9, 11]) are defined by the generating
function

1

1F1(1;N + 1;x)
=

xN/N !

et −
∑N−1

n=0 xn/n!
=

∞∑
n=0

BN,n
xn

n!
,

where

1F1(a; b; z) =

∞∑
n=0

(a)(n)

(b)(n)
zn

n!

is the confluent hypergeometric function with (x)(n) = x(x+ 1) · · · (x+ n− 1) (n ≥ 1) and
(x)(0) = 1. When N = 1, Bn = B1,n are classical Bernoulli numbers defined by

t

et − 1
=

∞∑
n=0

Bn
tn

n!
.

In addition, hypergeometric Cauchy numbers cN,n (see [13]) are defined by

1

2F1(1, N ;N + 1;−x)
=

(−1)N−1xN/N

log(1 + t)−
∑N−1

n=1 (−1)N−1xn/n
=

∞∑
n=0

cN,n
xn

n!
,

where

2F1(a, b; c; z) =
∞∑
n=0

(a)(n)(b)(n)

(c)(n)
zn

n!

is the Gauss hypergeometric function. When N = 1, cn = c1,n are classical Cauchy numbers
defined by

t

log(1 + t)
=

∞∑
n=0

cn
tn

n!
.

Hypergeometric Euler numbers EN,n ([18]) are defined by

1

1F2(1;N + 1, (2N + 1)/2; t2/4)
=

∞∑
n=0

EN,n
tn

n!
,

where 1F2(a; b, c; z) is the hypergeometric function defined by

1F2(a; b, c; z) =

∞∑
n=0

(a)(n)

(b)(n)(c)(n)
zn

n!
.

When N = 0, then En = E0,n are classical Euler numbers.
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On the other hand, L. Carlitz ([1]) introduced analogues of Bernoulli numbers for the
rational function (finite) field K = Fr(T ), which are called Bernoulli-Carlitz numbers now.
Bernoulli-Carlitz numbers have been studied since then (e.g., see [2, 3, 5, 10, 19]). According
to the notations by Goss [6], Bernoulli-Carlitz numbers are defined by

x

eC(x)
=

∞∑
n=0

BCn

Π(n)
xn.

Here, eC(x) are the Carlitz exponential defined by

eC(x) =

∞∑
i=0

xr
i

Di
,

where Di = [i][i− 1]r · · · [1]ri−1
(i ≥ 1) with D0 = 1, and [i] = T ri −T . The Carlitz factorial

Π(i) is defined by

Π(i) =

m∏
j=0

D
cj
j

for a non-negative integer i with r-ary expansion:

i =
m∑
j=0

cjr
j (0 ≤ cj < r).

As analogues of the classical Cauchy numbers cn, Cauchy-Carlitz numbers CCn ([12])
are introduced as

x

logC(x)
=

∞∑
n=0

CCn

Π(n)
xn.

Here, logC(x) is the Carlitz logarithm defined by

logC(x) =
∞∑
i=0

(−1)i
xr

i

Li
,

where Li = [i][i− 1] · · · [1] (i ≥ 1) with L0 = 1.
In addition, we define the Carlitz hyperbolic cosine CoshC(x) by

CoshC(x) =

∞∑
i=0

xr
2i

D2i

and the Carlitz hyperbolic cosine SinhC(x) by

SinhC(x) =
∞∑
i=0

xr
2i+1

D2i+1
.

In [12], Bernoulli-Carlitz numbers and Cauchy-Carlitz numbers are expressed explicitly
by using the Stirling-Carlitz numbers of the second kind and of the first kind, respectively.
These properties are the extensions that Bernoulli numbers and Cauchy numbers are ex-
pressed explicitly by using the Stirling numbers of the second kind and of the first kind,
respectively.
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2 Fundamental properties

For N ≥ 1, define the truncated Bernoulli-Carlitz numbers BCN,n and the truncated Cauchy-
Carlitz numbers CCN,n by

xr
N
/DN

eC(x)−
∑N−1

i=0 xri/Di

=
∞∑
n=0

BCN,n

Π(n)
xn

and
(−1)Nxr

N
/LN

logC(x)−
∑N−1

i=0 (−1)ixri/Li

=
∞∑
n=0

CCN,n

Π(n)
xn,

respectively. When N = 0, BCn = BC0,n and CCn = CC0,n are the original Bernoulli-
Carlitz numbers and Cauchy-Carlitz numbers, respectively.

For N ≥ 1, define the truncated Euler-Carlitz numbers ECN,n by

xr
2N

/D2N

CoshC(x)−
∑N−1

i=0 xr2i/D2i

=

∞∑
n=0

ECN,n

Π(n)
xn.

When N = 0, ECn = EC0,n are the Euler-Carlitz numbers, defined by

x

CoshC(x)
=

∞∑
n=0

ECn

Π(n)
xn.

Finally, define the truncated Euler-Carlitz numbers of the second kind ÊCN,n by

xr
2N+1

/D2N+1

SinhC(x)−
∑N−1

i=0 xr2i+1/D2i+1

=
∞∑
n=0

ÊCN,n

Π(n)
xn.

When N = 0, ÊCn = ÊC0,n are the Euler-Carlitz numbers of the second kind, defined by

xr/D1

SinhC(x)
=

∞∑
n=0

ÊCn

Π(n)
xn.

We obtain some explicit expressions of the hypergeometric Bernoulli-Carlitz numbers
BCN,n, the hypergeometric Cauchy numbers CCN,n, the hypergeometric Bernoulli-Carlitz

numbers ECN,n and the hypergeometric Bernoulli-Carlitz numbers ÊCN,n, respectively.

Theorem 1. For n ≥ 1,

BCN,n = Π(n)

n∑
k=1

(−DN )k
∑

i1,...,ik≥1

rN+i1+···+rN+ik=n+krN

1

DN+i1 · · ·DN+ik

.

Remark. When N = 0, we have

BCn = Π(n)
n∑

k=1

(−1)k
∑

i1,...,ik≥1

ri1+···+rik=n+k

1

Di1 · · ·Dik

which is Theorem 4.2 in [10].
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We can express the hypergeometric Bernoulli-Carlitz numbers in terms of the binomial
coefficients too.

Proposition 1. For n ≥ 1,

BCN,n = Π(n)
n∑

k=1

(
n+ 1

k + 1

)
(−DN )k

∑
i1,...,ik≥0

rN+i1+···+rN+ik=n+krN

1

DN+i1 · · ·DN+ik

.

Remark. When N = 0, we have

BCn = Π(n)
n∑

k=1

(
n+ 1

k + 1

)
(−1)k

∑
i1,...,ik≥0

ri1+···+rik=n+k

1

Di1 · · ·Dik

which is Proposition 4.4 in [10].

Next, we shall give an explicit formula for hypergeometric Cauchy-Carlitz numbers.

Theorem 2. For n ≥ 1,

CCN,n = Π(n)

n∑
k=1

(−LN )k
∑

i1,...,ik≥1

rN+i1+···+rN+ik=n+krN

(−1)i1+···+ik

LN+i1 · · ·LN+ik

.

Remark. When N = 1, we have

CCn = Π(n)
n∑

k=1

(−1)k
∑

i1,...,ik≥1

ri1+···+rik=n+k

(−1)i1+···+ik

Li1 · · ·Lik

which is Theorem 3 in [12].

We can express the hypergeometric Cauchy numbers in terms of the binomial coefficients
too.

Proposition 2. For n ≥ 1,

CCN,n = Π(n)
n∑

k=1

(
n+ 1

k + 1

)
(−LN )k

∑
i1,...,ik≥0

rN+i1+···+rN+ik=n+krN

(−1)i1+···+ik

LN+i1 · · ·LN+ik

.

We can obtain explicit expressions of the hypergeometric Euler-Carlitz numbers ECN,n.

Theorem 3. For n ≥ 1,

ECN,n = Π(n)

n∑
k=1

(−D2N )k
∑

i1,...,ik≥1

r2N+2i1+···+r2N+2ik=n+kr2N

1

D2N+2i1 · · ·D2N+2ik

.

We can get the form with binomial coefficients.
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Proposition 3. For n ≥ 1,

ECN,n = Π(n)

n∑
k=1

(
n+ 1

k + 1

)
(−D2N )k

∑
i1,...,ik≥0

r2N+2i1+···+r2N+2ik=n+kr2N

1

D2N+2i1 · · ·D2N+2ik

.

When N = 0, we have the expression of the Euler-Carlitz numbers ECn.

Corollary 1. For n ≥ 1, we have

ECn = Π(n)
n∑

k=1

(−1)k
∑

i1,...,ik≥1

r2i1+···+r2ik=n+k

1

D2i1 · · ·D2ik

= Π(n)

n∑
k=1

(−1)k
(
n+ 1

k + 1

) ∑
i1,...,ik≥0

r2i1+···+r2ik=n+k

1

D2i1 · · ·D2ik

.

In a similar manner, we have an explicit expression of the hypergeometric Euler-Carlitz
numbers of the second kind ÊCN,n.

Theorem 4. For n ≥ 1,

ÊCN,n = Π(n)

n∑
k=1

(−D2N+1)
k

∑
i1,...,ik≥1

r2N+2i1+1+···+r2N+2ik+1=n+kr2N+1

1

D2N+2i1+1 · · ·D2N+2ik+1
.

We can get the form with binomial coefficients. Note that each i takes 0 too in this case.

Proposition 4. For n ≥ 1,

ÊCN,n = Π(n)

n∑
k=1

(
n+ 1

k + 1

)
(−D2N+1)

k

×
∑

i1,...,ik≥0

r2N+2i1+1+···+r2N+2ik+1=n+kr2N+1

1

D2N+2i1+1 · · ·D2N+2ik+1
.

When N = 0, we have the expression of the Euler-Carlitz numbers of the second kind
ÊCn.

Corollary 2. For n ≥ 1, we have

ÊCn = Π(n)
n∑

k=1

(−D1)
k

∑
i1,...,ik≥1

r2i1+1+···+r2ik+1=n+kr

1

D2i1+1 · · ·D2ik+1

= Π(n)

n∑
k=1

(−D1)
k

(
n+ 1

k + 1

) ∑
i1,...,ik≥0

r2i1+1+···+r2ik+1=n+kr

1

D2i1+1 · · ·D2ik+1
.
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3 Incomplete Stirling-Carlitz numbers

In [12], as analogues of the Stirling numbers of the first kind
[
n
k

]
defined by(

− log(1− t)
)k

k!
=

∞∑
n=0

[n
k

] tn
n!
,

the Stirling-Carlitz numbers of the first kind
[
n
k

]
C
were introduced by(

logC(z)
)k

Π(k)
=

∞∑
n=0

[n
k

]
C

zn

Π(n)
. (1)

As analogues of the Stirling numbers of the second kind
{
n
k

}
defined by

(et − 1)k

k!
=

∞∑
n=0

{n

k

} tn

n!
,

the Stirling-Carlitz numbers of the second kind
{
n
k

}
C
were introduced by(

eC(z)
)k

Π(k)
=

∞∑
n=0

{n

k

}
C

zn

Π(n)
.

By the definition (1), we have[n
0

]
C
= 0 (n ≥ 1),

[ n
m

]
C
= 0 (n < m) and

[n
n

]
C
= 1 (n ≥ 0)

and {n

0

}
C
= 0 (n ≥ 1),

{ n

m

}
C
= 0 (n < m) and

{n

n

}
C
= 1 (n ≥ 0).

On the other hand, in [4, 14, 15, 16], so-called incomplete Stirling numbers of the fist
kind and of the second kind were introduced as some generalizations of the classical Stirling
numbers of the fist kind and of the second kind. One of the incomplete Stirling numbers
is restricted Stirling number, and another is associated Stirling number. Associated Stirling
numbers of the second kind

{
n
k

}
≥m

are given by(
ex − Em−1(x)

)k
k!

=

∞∑
n=0

{n

k

}
≥m

xn

n!
(m ≥ 1),

where

Em(x) =

m∑
n=0

xn

n!
.

When m = 1,
{
n
k

}
=

{
n
k

}
≥1

is the classical Stirling numbers of the second kind. Restricted

Stirling numbers of the second kind
{
n
k

}
≥m

are given by(
Em(x)− 1

)k
k!

=
∞∑
n=0

{n

k

}
≤m

xn

n!
(m ≥ 1).

When m → ∞,
{
n
k

}
=

{
n
k

}
≤∞ is the classical Stirling numbers of the second kind.
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Associated Stirling numbers of the first kind
[
n
k

]
≥m

are given by(
− log(1− x) + Fm−1(−x)

)k
k!

=

∞∑
n=0

[n
k

]
≥m

xn

n!
(m ≥ 1),

where

Fm(t) =

m∑
k=1

(−1)k+1 t
k

k
.

When m = 1,
[
n
k

]
=

[
n
k

]
≥1

is the classical Stirling numbers of the first kind. Restricted

Stirling numbers of the first kind
[
n
k

]
≥m

are given by(
−Fm(−x)

)k
k!

=

∞∑
n=0

[n
k

]
≤m

xn

n!
(m ≥ 1).

When m → ∞,
[
n
k

]
=

[
n
k

]
≤∞ is the classical Stirling numbers of the first kind.

Now, we introduce associated Stirling-Carlitz numbers and restricted Stirling-Carlitz
numbers. The partial sum of the Carlitz exponential is denoted by

Em(x) =

m∑
i=0

xr
i

Di
.

The associated Stirling-Carlitz numbers of the second kind
{
n
k

}
C,≥m

are defined by(
eC(z)− Em−1(z)

)k
Π(k)

=

∞∑
n=0

{n

k

}
C,≥m

zn

Π(n)
. (2)

The restricted Stirling-Carlitz numbers of the second kind
{
n
k

}
C,≤m

are defined by(
Em(z)

)k
Π(k)

=

∞∑
n=0

{n

k

}
C,≤m

zn

Π(n)
. (3)

When m = 0 in (2) or m → ∞ in (3),
{
n
k

}
C
=

{
n
k

}
C,≥0

=
{
n
k

}
C,≤∞ is the original Stirling-

Carlitz number of the second kind. The partial sum of the Carlitz logarithm is denoted
by

Fm(x) =
m∑
i=0

(−1)i
xr

i

Li
.

The associated Stirling-Carlitz numbers of the first kind
[
n
k

]
C,≥m

are defined by(
logC(z)−Fm−1(z)

)k
Π(k)

=
∞∑
n=0

[n
k

]
C,≥m

zn

Π(n)
. (4)

The restricted Stirling-Carlitz numbers of the first kind
[
n
k

]
C,≤m

are defined by(
Fm(z)

)k
Π(k)

=

∞∑
n=0

[n
k

]
C,≤m

zn

Π(n)
. (5)

When m = 0 in (4) or m → ∞ in (5),
[
n
k

]
C
=

[
n
k

]
C,≥0

=
[
n
k

]
C,≤∞ is the original Stirling-

Carlitz number of the first kind.
Due to associated Stirling-Carlitz numbers of the second kind in (2), we can obtain a more

explicit expression of hypergeometric Bernoulli-Carlitz numbers, expressed in Theorem 1 or
Proposition 1.
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Theorem 5. For N ≥ 1 and n ≥ 1, we have

BCN,n = Π(n)

n∑
k=1

(
n+ 1

k + 1

)
(−DN )kΠ(k)

Π(n+ krN )

{
n+ krN

k

}
C,≥N

.

Bernoulli-Carlitz numbers can be expressed in term of the Stirling-Carlitz numbers of
the second kind:

BCn =

∞∑
j=0

(−1)jDj

L2
j

{
n

rj − 1

}
C

([12, Theorem 2]). When N = 0, Theorem 5 is reduced to a different expression of Bernolli-
Carlitz numbers in terms of the Stirling-Carlitz numbers of the second kind.

Corollary 3. For n ≥ 1, we have

BCn = Π(n)
n∑

k=1

(
n+ 1

k + 1

)
(−1)kΠ(k)

Π(n+ k)

{
n+ k

k

}
C

.

Remark. This is an analogue of

Bn =
n∑

k=1

(−1)k
(
n+1
k+1

)(
n+k
k

) {
n+ k

k

}
,

which is a simple formula appeared in [7, 20].

Similarly, due to associated Stirling-Carlitz numbers of the first kind in (4), we can
obtain a more explicit expression of hypergeometric Cauchy-Carlitz numbers, expressed in
Theorem 2 or Proposition 2.

Theorem 6. For N ≥ 1 and n ≥ 1, we have

CCN,n = Π(n)

n∑
k=1

(
n+ 1

k + 1

)
(−1)Nk(−LN )kΠ(k)

Π(n+ krN )

[
n+ krN

k

]
C,≥N

.

Cauchy-Carlitz numbers can be expressed in term of the Stirling-Carlitz numbers of the
first kind:

CCn =
∞∑
j=0

1

Lj

[
n

rj − 1

]
C

([12, Theorem 1]). When N = 0, Theorem 6 is reduced to a different expression of Cauchy-
Carlitz numbers in terms of the Stirling-Carlitz numbers of the first kind.

Corollary 4. For n ≥ 1, we have

CCn = Π(n)
n∑

k=1

(
n+ 1

k + 1

)
(−1)kΠ(k)

Π(n+ k)

[
n+ k

k

]
C

.

Remark. This is an analogue of

cn =
n∑

k=1

(−1)n−k
(
n+1
k+1

)(
n+k
k

) [
n+ k

k

]
,

which is Proposition 2 in [12].
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4 Determinant expression of Bernoulli-Carlitz, Cauchy-
Carlitz and Euler-Carlitz numbers

We give a determinant expression of truncated Cauchy-Carlitz numbers.

Theorem 7. For integers N ≥ 0 and n ≥ 1,

CCN,n = Π(n)

∣∣∣∣∣∣∣∣∣∣∣∣

−a1 1 0

a2 −a1
. . .
. . .

. . . 0
−a1 1

(−1)nan a2 −a1

∣∣∣∣∣∣∣∣∣∣∣∣
,

where

al =
(−1)N+logr(l+rN )LNδ∗l

Llogr(l+rN )

(l ≥ 1)

with

δ∗l =

{
1 if l = rN+i − rN (i = 0, 1, . . . );

0 otherwise.
(6)

We give a determinant expression of truncated Bernoulli-Carlitz numbers.

Theorem 8. For integers N ≥ 0 and n ≥ 1,

BCN,n = Π(n)

∣∣∣∣∣∣∣∣∣∣∣∣

−d1 1 0

d2 −d1
. . .
. . .

. . . 0
−d1 1

(−1)ndn d2 −d1

∣∣∣∣∣∣∣∣∣∣∣∣
,

where

dl =
DNδ∗l

Dlogr(l+rN )

(l ≥ 1)

with δ∗l as in (6).

The Euler-Carlitz numbers ECn also have a similar determinant expression.

Theorem 9. For n ≥ 0, we have

ECn = Π(n)

∣∣∣∣∣∣∣∣∣∣∣

−d1 1
d2 −d1
...

...
. . . 1

(−1)n−1dn−1 (−1)n−2dn−2 · · · −d1 1
(−1)ndn (−1)n−1dn−1 · · · d2 −d1

∣∣∣∣∣∣∣∣∣∣∣
,

where

dl =
δ∗l

Dlogr(l+1)
(l ≥ 1)

with

δ∗l =

{
1 if l = r2i − 1 (i = 0, 1, . . . );

0 otherwise.
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The Euler-Carlitz numbers of the second kind ÊCn also have a similar determinant
expression.

Theorem 10. For n ≥ 0, we have

ÊCn = Π(n)

∣∣∣∣∣∣∣∣∣∣∣∣

−d̂1 1

d̂2 −d̂1
...

...
. . . 1

(−1)n−1d̂n−1 (−1)n−2d̂n−2 · · · −d̂1 1

(−1)nd̂n (−1)n−1d̂n−1 · · · d̂2 −d̂1

∣∣∣∣∣∣∣∣∣∣∣∣
,

where

d̂l =
δ̂∗l

Dlogr(l+1)
(l ≥ 1)

with

δ̂∗l =

{
1 if l = r2i+1 − 1 (i = 0, 1, . . . );

0 otherwise.
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