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1 The background

1.1 Convex geometry (the classical case)

The classical Bonnesen–Diskant inequality in convex geometry fits into the following schema:

the Bonnesen–Diskant
2⃝ +3

1⃝

#+
the Brunn–Minkowski

+
the equality cond’n

+3
the isoperimetric

+
the equality cond’n

Let me explain it in detail.

The isoperimetric inequality. A domain P enclosed by a Jordan curve of a given length
L > 0 has area

A ≤ L2

4π
,

and the equality holds iff P is a disk.

To show the inequality, it suffices to consider the case where P is convex; hence we enter
into convex geometry. Let P,Q be convex bodies (viz. compact convex sets with positive
volumes) in Rn.

P +Q := {p+ q : p ∈ P, q ∈ Q} (the Minkowski sum).

The Brunn–Minkowski inequality. Let P,Q be convex bodies in Rn. Then

VolRn(P +Q)
1
n ≥ VolRn(P )

1
n +VolRn(Q)

1
n

The equality holds iff P = sQ+ t, ∃s > 0, ∃t ∈ Rn (viz. P and Q are homothetic).

For i = 0, 1, 2, . . . , n, we define V (P, i;Q,n− i) as those satisfying

VolRn(P +Q) =
n∑

i=0

(
n

i

)
V (P, i;Q,n− i);

viz.

n = 2 : V (P ;Q) =
1

2
(Area(P +Q)−Area(P )−Area(Q)) ,

n = 3 : V (P ;Q, 2) =
1

6
(Vol(P +Q+Q)− 2Vol(P +Q)

−Vol(Q+Q) + Vol(P ) + 2Vol(Q)).
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Let (P,Q) be a pair of convex bodies in Rn. We set r(P,Q) := max{s > 0 : P ⊃ sQ+t, ∃t ∈
Rn} and R(P,Q) := min{s > 0 : P ⊂ sQ + t, ∃t ∈ Rn}. In particular, r(P,Q) = R(P,Q)
implies that P and Q are homothetic.

The Bonnesen–Diskant inequality. Let P,Q be convex bodies in Rn, and set si :=
V (P, i;Q,n− i). Then

s
1

n−1

n−1 −
(
s

n
n−1

n−1 − sns
1

n−1

0

) 1
n

s
1

n−1

0

≤ r(P,Q) ≤ sn
sn−1

≤ · · · ≤ s1
s0

≤ R(P,Q) ≤ s
1

n−1
n

s
1

n−1

1 −
(
s

n
n−1

1 − s0s
1

n−1
n

) 1
n

.

1⃝ The Bonnensen–Diskant inequality implies the isoperimetric inequality. For simplicity,
suppose n = 2. By the Bonnensen–Diskant inequality,

s1 −
√
s21 − s0s2
s0

≤ r ≤ R ≤ s2

s1 −
√
s21 − s0s2

=
s1 +

√
s21 − s0s2
s0

∴ R− r ≤ 2
√
s21 − s0s2
s0

∴ s20
4
(R− r)2 ≤ s21 − s0s2.

Moreover, if Q is a unit disk, then s0 = Area(Q) = π, s1 = V (P,Q) = 1
2L, and r (resp. R)

is the usual inradius (resp. circumradius) of P . Hence

π2

4
(R− r)2 ≤

(
1

2
L

)2

− πA ∴ π2(R− r)2 ≤ L2 − 4πA.

2⃝ The Bonnesen–Diskant inequality implies the Brunn–Minkowski inequality. For simplic-
ity, suppose n = 2. We assume the middle part of the Bonnesen–Diskant inequality;

s2
s1

≤ s1
s0

∴ Area(P )Area(Q) ≤ V (P ;Q)2.

Then

Area(P +Q) = Area(P ) + 2V (P ;Q) + Area(Q)

≥ Area(P ) + 2Area(P )
1
2 Area(Q)

1
2 +Area(Q)

=
(
Area(P )

1
2 +Area(Q)

1
2

)2
.

Assume the Bonnesen–Diskant inequality

Area(Q)2

4
(R− r)2 ≤ V (P ;Q)2 −Area(P )Area(Q)

and the equality

Area(P +Q) =
(
Area(P )

1
2 +Area(Q)

1
2

)2
.

Then

Area(P ) + 2V (P ;Q) + Area(Q) = Area(P ) + 2Area(P )
1
2 Area(Q)

1
2 +Area(Q)

∴ V (P ;Q) =
√

Area(P )Area(Q) ∴ R = r.

Hence P,Q are homothetic.
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Ideas for the proof of the Bonnesen–Diskant inequality. For simplicity, suppose n = 2. Let
P be the rectangle defined by A = diag(a1, a2) and let Q be the rectangle defined by
B = diag(b1, b2). In this case, by easy calculations, we can easily verify

V (A;B) =
1

2
(a1b2 + a2b1), r(A,B) = min

{
a1
b1

,
a2
b2

}
and

V (A− tB;B) + t det(B) ≤ V (A;B) (an Aleksandrov–Fenchel-type inequality).

Since
d

dt
det(A− tB) = −2V (A− tB;B),

det(A) = 2

∫ r(A,B)

t=0
V (A− tB;B) dt ≤ 2

∫ r(A,B)

t=0
(V (A;B)− t det(B)) dt.

By direct calculation of the RHS, we can conclude.

1.2 The work of Boucksom–Favre–Jonsson

Teissier’s problem. Let X a complete variety over a field. Given nef and big line bundles
P,Q on X, we set

r(P,Q) := sup {s ∈ Q>0 : P − sQ is effective} ,

si := deg
(
P ·i ·Q·(dimX−i)

)
(i = 0, 1, . . . , dimX).

Then can we give bounds for r(P,Q) in terms of si?

Teissier’s problem was solved by

• Boucksom–Favre–Jonsson ’09 for smooth complete varieties over algebraically closed
fields of characteristic zero,

• Cutkosky ’15 for complete varieties over arbitrary fields,

• Fu–Xiao, ... for compact Kähler manifolds.

Let Rat(X) denote the field of rational functions on X. Given a class α ∈ N1
R(X) of an

R-Cartier divisor, we define

H0(α) :=
{
ϕ ∈ Rat(X)× : α+ (ϕ) ≥ 0

}
∪ {0},

and set

vol(α) := lim sup
m→+∞

(dimX)!

mdimX
dimk H

0(mα).

We say that α is big if vol(α) > 0.
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An answer to Teissier’s problem by Boucksom–Favre–Jonsson: Let X denote the
Zariski–Riemann space of X. Let Np

R(X) (resp. CNp
R(X)) denote the space of numerical

Weil classes (resp. numerical Cartier classes) of codimension p.

• Given any big classes α1, . . . , αp ∈ CN1
R(X), the following exists:

⟨α1 · · ·αp⟩ := sup {(α1 − γ1) · · · (αp − γp)} ∈ Np
R(X),

where γ1, . . . , γp ∈ CN1
R(X) are psef classes such that α1 − γ1, . . . , αp − γp are nef.

• Let α, β ∈ CN1
R(X). If α is big, then

d

dt
vol(α+ tβ)

∣∣∣∣
t=0

= (dimX)⟨αdimX−1⟩ · β.

• Let α, β ∈ CN1
R(X) be nef and big Cartier classes, and let n := dimX. Set

si := deg(αi · βn−i), r(α, β) := sup{s > 0 : α− sβ is psef},

and R(α, β) := 1/r(β, α). Then the same inequality as the Bonnesen–Diskant inequal-
ity holds true.

As a corollary,

The equality conditions for the Brunn–Minkowski inequality (BFJ). For nef and
big Cartier classes α, β ∈ CN1

R(X), TFAE.

(1) vol(α+ β)
1
n = vol(α)

1
n + vol(β)

1
n .

(2) s2i = si−1si+1 for i = 1, . . . , n− 1.

(3) sni = sn−i
0 sin for i = 0, . . . , n.

(4) snn−1 = s0s
n−1
n .

(5)
α

vol(α)
1
n

=
β

vol(β)
1
n

in CN1
R(X).

1.3 The Arakerov setting (I [1])

Convex Geometry Algebraic Geometry Arakelov Geometry

convex bodies in Rn nef & big divisors nef & big adelic divisors

n n = dimX n = dimX + 1

vol(P ) vol(α) v̂ol(P )

si = V (P, i;Q,n− i) si = deg(αiβn−i) si = d̂eg(P
i
Q

n−i
)

r(P,Q) r(α, β) r(P ,Q)

R(P,Q) = 1/r(Q,P ) R(α, β) = 1/r(β, α) R(P ,Q) = 1/r(Q,P )

Let K be a number field, and let MK be the set of places of K. Let X be a normal
projective K-variety, and let D be an R-Cartier divisor on X. For each v ∈ MK , Xan

v

denotes the associated analytic space. Let gv : (X \Supp(D))anv → R be a D-Green function
on Xan

v : roughly,

“gv = (a fundamental solution of a Poisson-type equation) + (a continuous function)”.
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Definition 1 (Adelic R-Cartier divisors). A couple
(
D,

∑
v∈MK

gv[v]
)
is said to be an adelic

R-Cartier divisor if

(1) (gv) is invariant under the complex conjugation and

(2) ∃ an OK-model (X ,D) of (X,D) that defines gv for all but finitely many v (so-called
the “adelic condition”).

We denote the R-vector space of adelic R-Cartier divisors on X by D̂ivR(X).

Remark 1. Let rv : Xan
v → Xv denote the reduction map at v. The Green function defined

by (X ,D) is defined as
g(X ,D)
v (x) := − log |fx|2(x),

where fx is a local defining equation of D at rv(x).

Example 1. (1) For a ϕ ∈ Rat(X)×,

(̂ϕ) :=

(ϕ),
∑

v∈MK

− log |ϕ|2v[v]

 ∈ D̂ivR(X).

(2) For a continuous function fv : Xan
v → R ∈ C(Xan

v ) (if v|∞, we assume that fv is

invariant under the complex conjugation), one has (0, fv[v]) ∈ D̂ivR(X).

(3) If fv is a constant function, (0, fv[v]) corresponds to (a constant)× (the fiber over v).

We assign to each D a finite set

Γ̂ss(D) :=
{
ϕ ∈ Rat(X)× : D + (̂ϕ) > 0

}
∪ {0},

where D > 0 means D ≥ 0, gv ≥ 0 (∀v ∈ MK), and infx∈Xan
∞ g∞ > 0. We then define the

arithmetic volume of D as

v̂ol(D) := lim sup
m→+∞

(dimX + 1)!

mdimX+1
log ♯Γ̂ss(mD).

Positivity of adelic R-Cartier divisors: Given a D ∈ D̂ivR(X) and an x ∈ X(K), we
set

hD(x) :=
1

deg(x)
d̂eg(D|x) (the height of x with respect to D).

nef: D is nef if hD(x) ≥ 0 (∀x ∈ X(K)) and gv is semipositive (∀ v ∈ MK). If v: finite,

“gv: semipositive ⇔ gv is uniformly approximable by nef models”.

integrable: D is integrable if D can be written as the difference of two nef adelic R-Cartier
divisors. We denote the R-vector space of integrable adelic R-Cartier divisors on X
by ÎntR(X).

big: D is big if v̂ol(D) > 0.

psef: D is psef if D +A is big for any big A.

17



Arithmetic intersection numbers:

• One can extend the arithmetic intersection numbers to the map

ÎntR(X)× dimX × D̂ivR(X) → R,

(D1, . . . , DdimX+1) 7→ d̂eg(D1 · · ·DdimX+1).

• An approximation of a big D is a couple (µ : X ′ → X,M) having the following
properties.

– µ is a birational morphism of normal projective varieties.

– M is a nef and big adelic R-Cartier divisor on X ′ s.t. µ∗D −M is psef.

We denote the set of approximations of D by Θ̂(D).

• Given big D1, . . . , Dp and nef and big Dp+1, . . . , DdimX+1, we set

⟨D1 · · ·Dp⟩ ·Dp+1 · · ·DdimX+1

= sup
(µ,M i)∈Θ̂(Di)

d̂eg
(
M1 · · ·Mp · µ∗Dp+1 · · ·µ∗DdimX+1

)
.

The differentiability of the volume function ([1]). Let D,E ∈ D̂ivR(X). If D is big,
then

d

dt
v̂ol(D + tE)

∣∣∣∣
t=0

= (dimX + 1)⟨DdimX⟩ · E.

The Bonnesen–Diskant bound for r(P ,Q) ([1]). Let P ,Q ∈ D̂ivR(X) be nef and big
adelic R-Cartier divisors. Let n := dimX + 1,

si := deg(P
i ·Qn−i

), r(P ,Q) := sup{s > 0 : P − sQ is psef},

and R(P ,Q) := 1/r(Q,P ). Then the same inequality as the Bonnesen–Diskant inequality
holds true.

As a corollary,

The equality conditions for the Brunn–Minkowski inequality ([1]). For nef and big

P ,Q ∈ D̂ivR(X), TFAE.

(1) v̂ol(P +Q)
1
n = v̂ol(P )

1
n + v̂ol(Q)

1
n .

(2) s2i = si−1si+1 for i = 1, . . . , n− 1.

(3) sni = sn−i
0 sin for i = 0, . . . , n.

(4) snn−1 = s0s
n−1
n .

(5) ∃ϕ1, . . . , ϕr ∈ Rat(X)×, a1, . . . , ar ∈ R, s.t.

P

v̂ol(P )
1
n

=
Q

v̂ol(Q)
1
n

+

r∑
i=1

ai(̂ϕi) (R-linearly equiv.)
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The Bogomolov conjecture and the equidistribution: The equidistribution theorem
of algebraic points with small heights was first exploited by Ullmo–Szpiro–Zhang to solve
the Bogomolov conjecture.

Bogomolov conjecture for abelian varieties (solved by S. Zhang). Let A be an abelian
variety over a number field, let h denote a Néron-Tate height, and let X be a subvariety of
A. Let ε > 0. If {x ∈ X(Q) : h(x) ≤ ε} is Zariski dense, then X is a translation of an
abelian subvariety by a torsion point.

The differentiability of the arithmetic volume function along the directions of contin-
uous functions implies the equidistribution theorem of algebraic points with small heights
(Chambert-Loir, Chen, I).

The equidistribution theorem. Let v be any place, let D be a big adelic R-Cartier
divisor, and let (xn) be a sequence of algebraic points on X such that, given any subvariety
Y , xn /∈ Y (Q) for every n ≫ 1. If hD(xn) converges to

v̂ol(D)

(dimX + 1)vol(D)
,

then for any f ∈ C0(Xan
v )

lim
n→∞

1

[K(xn) : K]

∑
w∈MK(xn)

v|w

[K(xn)w : Kv]f(x
w
n ) =

1

vol(D)
⟨D· dimX⟩ · (0, 2f [v]),

where K(xn) denotes the field of definition for xn.

2 The notion of “pairs” in Arakelov geometry (I [2, 3])

Motivation:

• Want to study the shapes of the arithmetic Okounkov bodies (explained later).

• Want to treat “open” arithmetic varieties (more generally, we should allow “singu-
larities” along boudaries (eg. Faltings’ height function on compact moduli spaces of
abelian varieties).

We denote the set of nontrivial normalized discrete valuations on Rat(X) by V(Rat(X)).
We regard such valuations as a generalized notion of prime divisors (although it contains
many pathological ones).

Definition 2. An R-base condition on X is defined as a finite formal R-linear combination

V =
∑

ν∈V(Rat(X))

ν(V)[ν], ν(V) ∈ R.

We denote the R-vector space of R-base conditions by BCR(X), and regard DivR(X) ⊂
WDivR(X) ⊂ BCR(X).

A valuation ν ∈ V(Rat(X)) extends by linearity to

ν : Rat(X)× ⊗Z R → R.

19



Given a ν ∈ V(Rat(X)) and a nonzero D ∈ DivR(X), we choose a local equation f defining
D around cX(ν) and set νC(D) := ν(f), which does not depend on a specific choice of f .

Given a pair (D;V) of a D ∈ D̂ivR(X) and a V ∈ BCR(X), we set

Γ̂ss(D;V) :=
{
ϕ ∈ Rat(X)× : (D + (̂ϕ);V) > 0

}
∪ {0},

where (D;V) ≥ 0 means D > 0 and νC(D) ≥ ν(V) (∀ν ∈ V(Rat(X))).

Definition 3. We define the arithmetic volume of a pair (D;V) as

v̂ol(D;V) := lim sup
m→+∞

(dimX + 1)!

mdimX+1
log ♯Γ̂ss(mD;mV).

Example 2 (Arithmetic Okounkov bodies). Let P1
Z = Proj(Z[X0, X1]), z = X0/X1

1),
0 = (1 : 0), and ∞ = (0 : 1). Note that z is a local equation defining ∞. Let a, b > 1. Then

g := − log |z|2 +max
{
log(a2|z|2), log b2

}
is an ∞-Green function. We consider the arithmetic Cartier divisor H := (∞, g). If we set

φ(x) := x log a+ (1− x) log b,

then one can verify by direct computation

v̂ol(H; r∞) =

∫ 1

r
max{φ, 0} dx

for every r with 0 ≤ r ≤ 1.
What is φ(x)? — −φ(x) is known to be given as the Legendre–Fenchel transform of the

metric:
−φ(x) = sup

t∈R
{xt−max {t+ log a, log b}} .

If (D;V) is big, the “unique” nef adelic R-Cartier divisor P (D;V) satisfying P (D;V) ≤
(D;V) and v̂ol(P (D;V)) = v̂ol(D;V) is called the positive part of the arithmetic Zariski
decomposition of (D;V).

One has
P (H; r∞) = (1− r)H + r(0, log a2).

In fact, the RHS is nef,

(H; r∞)− P (H; r∞) = r
(
H, g − log a2;∞

)
≥ 0,

and

v̂ol(H; r∞) = v̂ol(P (H; r∞)) =
1− r

2
log(a1+rb1−r).

Moreover, φ(r) = hP (H;r∞)(∞).

1)In the talk, I set z = X1/X0.
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Continuity of the arithmetic volume function (I [3]):

Theorem 1 ([3, Main Theorem]). Let X be a normal projective K-variety. Let (V, ∥ · ∥V )
be a finite-dimensional R-subspace of D̂ivR(X) endowed with a norm ∥ · ∥V , let Σ be a finite
set of points on X, and let B > 0 be a constant. Then, given any ε > 0, there exists a δ > 0
such that ∣∣∣v̂ol(D + (0,f);V)− v̂ol(E;V)

∣∣∣ ≤ ε

for every D,E ∈ D̂ivR(X) with max
{
∥D∥V , ∥E∥V

}
≤ B and ∥D−E∥V ≤ δ, f ∈

⊕
C(Xan

v )
with ∥f∥sup ≤ δ, and V ∈ BCR(X) with {cX(ν) : ν(V) > 0} ⊂ Σ.

Remark 2. It gives a generalization of Moriwaki’s continuity theorem.

big: (D;V) is big if v̂ol(D;V) > 0. One has

“(D;V) is big ⇔ ∃ a big A s.t. v̂ol(D −A;V) > 0” (by [3]).

psef: (D;V) is psef if v̂ol(D +A;V) > 0 for ∀ big A.

Definition 4 (Approximating Zariski decomposition). Let (D;V) be a big pair. An ap-
proximation of (D;V) is a couple (µ : X ′ → X,M) having the following properties.

• µ is a birational morphism of normal projective varieties.

• M is a nef and big adelic R-Cartier divisor on X ′ s.t. µ∗(D;V)−M is psef.

We denote the set of approximations of (D;V) by Θ̂(D;V).
Definition 5 (Arithmetic positive intersection numbers). Given big (D1;V1), . . . , (Dp;Vp)
and nef and big Dp+1, . . . , DdimX+1,

⟨(D1;V1) · · · (Dp;Vp)⟩ ·Dp+1 · · ·DdimX+1

:= sup
(µ,M i)∈Θ̂(Di;Vi)

d̂eg
(
M1 · · ·Mp · µ∗Dp+1 · · ·µ∗DdimX+1

)
.

By linearity and continuity, one obtains a map

D̂ivR(X) ∋ E 7→ ⟨(D;V)· dimX⟩ · E ∈ R.

Arithmetic Fujita approximation ([2]). If (D;V) is big, then

v̂ol(D;V) = ⟨(D;V)·(dimX+1)⟩.

Differentiability of the arithmetic volume function:

Theorem 2 ([2, Theorem A]). Let X be a normal projective K-variety, let D,E be adelic
R-Cartier divisors, and let V be an R-base condition. If (D;V) is big, then

d

dt
v̂ol(D + tE;V)

∣∣∣∣
t=0

= (dimX + 1)⟨(D;V)· dimX⟩ · E.

Remark 3. It gives a generalization of my previous work [1].

Corollary 1 ([2, Theorem B]). Let (D;V), (D′
;V ′) be big pairs on X. Let n := dimX + 1,

si := ⟨(D;V)i · (D′
;V ′)n−i⟩, for i = 0, . . . , n,

r((D;V), (D′
;V ′)) := inf

(µ,M)∈Θ̂(D
′
;V ′)

sup{s > 0 : (µ∗D − sM ;V) is psef},

and R((D;V), (D′
;V ′)) := 1/r((D

′
;V ′), (D;V)). Then the same inequality as the Bonnesen–

Diskant inequality holds true.
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