Local p-rank and semi-stable reduction of curves

Yu Yang (Kyoto University)

Abstract

In the present paper, we investigate the local *p*-ranks of coverings of stable curves. Let *G* be a finite *p*-group, $f: Y \longrightarrow X$ a morphism of stable curves over a complete discrete valuation ring with algebraically closed residue field of characteristic p > 0, xa singular point of the special fiber X_s of *X*. Suppose that the generic fiber X_η of *X* is smooth, and the morphism of generic fibers f_η is a Galois étale covering with Galois group *G*. Write *Y'* for the normalization of *X* in the function field of *Y*, $\psi: Y' \longrightarrow X$ for the resulting normalization morphism. Let $y' \in \psi^{-1}(x)$ be a point of the inverse image of *x*. Suppose that the inertia group $I_{y'} \subseteq G$ of y' is an abelian *p*-group. Then we give an explicit formula for the *p*-rank of a connected component of $f^{-1}(x)$. Furthermore, we prove that the *p*-rank is bounded by a constant which depends only on the order of $I_{y'}$. These results give an answer of a problem posed by M. Saïdi concerning local *p*-ranks of coverings of curves in the case where $I_{y'}$ is abelian.

1 Definitions and Problems

Let R be a complete valuation ring with algebraically closed residue field k of characteristic p > 0, K the quotient field of R, and \overline{K} an algebraic closure of K. We use the notation S to denote the spectrum of R. Write $\eta, \overline{\eta}$ and s for the generic point, the geometric generic point, and the closed point corresponding to the natural morphisms Spec $K \longrightarrow S$, Spec $\overline{K} \longrightarrow S$, and Spec $k \longrightarrow S$, respectively. Let X be a stable curve of genus g_X over S. Write $X_{\eta}, X_{\overline{\eta}}$, and X_s for the generic fiber, the geometric generic fiber, and the special fiber, respectively. Moreover, we suppose that X_{η} is smooth over η .

Definition 1.1. Let $f: Y \longrightarrow X$ be a morphism of stable curves over S and G a finite group. Then f is called a *stable covering* (resp. *G-stable covering*) over S if the morphism of generic fibers f_{η} is an étale covering (resp. an étale covering whose Galois group is isomorphic to G).

Let Y_{η} be a geometrically connected curve over η , $f_{\eta} : Y_{\eta} \longrightarrow X_{\eta}$ a finite Galois étale covering over η with Galois group G. By replacing S by a finite extension of S, we may assume that Y_{η} admits a stable model over S. Then f_{η} extends uniquely to a G-stable covering $f : Y \longrightarrow X$ over S (cf. [L, Theorem 0.2]). We are interested in understanding the structure of the special fiber Y_s of Y. If the order $\sharp G$ of G is prime to p, then by the specialization theorem for log étale fundamental groups, f_s is an admissible covering (cf. [Y1]); thus, Y_s may be obtained by gluing together tame coverings of the irreducible components of X_s . On the other hand, if $p \mid \sharp G$, then f_s is not a finite morphism in general, where $\sharp(-)$ denotes the cardinality of (-). For example, if $\operatorname{char}(K) = 0$ and $\operatorname{char}(k) = p > 0$, then there exists a Zariski dense subset Z of the set of closed points of X, which may in fact be taken to be X when k is an algebraic closure of \mathbb{F}_p , such that for any $x \in Z$, after possibly replacing K by a finite extension of K, there exist a finite group H and an H-stable covering $f_W : W \longrightarrow X$ such that the fiber $(f_W)^{-1}(x)$ is not finite (cf. [T], [Y2]). **Definition 1.2.** Let $f: Y \longrightarrow X$ be a stable covering over S. Suppose that the morphism of special fibers $f_s: Y_s \longrightarrow X_s$ is not finite. A closed point $x \in X$ is called a *vertical point* associated to f, or for simplicity, a *vertical point* when there is no fear of confusion, if $f^{-1}(x)$ is not a finite set. The inverse image $f^{-1}(x)$ is called the *vertical fiber associated to* x.

In order to investigate the properties of Y_s , we focus on a geometric invariant $\sigma(Y_s)$ which is called the *p*-rank of Y_s defined as follows.

Definition 1.3. Let C be a disjoint union of projective curves over an algebraically closed field of characteristic p > 0. We define the *p*-rank of C as follows:

$$\sigma(C) := \dim_{\mathbb{F}_p} \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(C, \mathbb{F}_p).$$

Remark 1.3.1. Let *C* be a semi-stable curve over an algebraically closed field of characteristic p > 0. Write Γ_C for the dual graph of *C*, $v(\Gamma_C)$ for the set of vertices of Γ_C . Then we have

$$\sigma(C) = \sum_{v \in v(\Gamma_C)} \sigma(\widetilde{C_v}) + \operatorname{rank}_{\mathbb{Z}} \operatorname{H}^1(\Gamma_C, \mathbb{Z}),$$

where for $v \in v(\Gamma)$, \tilde{C}_v denotes the normalization of the irreducible component of C corresponding to v.

By Remark 1.3.1, to calculate $\sigma(Y_s)$, it suffices to calculate the rank of $\mathrm{H}^1(\Gamma_{Y_s},\mathbb{Z})$ (where Γ_{Y_s} denotes the dual graph of Y_s), the *p*-ranks of the irreducible components of Y_s which are finite over X_s , and the *p*-ranks of the vertical fibers of f. In the present paper, we study the *p*-rank of a vertical fiber and consider the following problem:

Problem 1.4. Let G be a finite p-group, x a vertical point associated to the G-stable covering $f: Y \longrightarrow X$, and $f^{-1}(x)$ the vertical fiber associated to x.

(a) Does there exist a bound on the p-rank $\sigma(f^{-1}(x))$ which depends only on the order of G (note that $\sigma(f^{-1}(x))$) is always bounded by the genus of Y_s)?

(b) Does there exist an explicit formula for the p-rank $\sigma(f^{-1}(x))$?

Remark 1.4.1. If x is a singular point, Problem 1.4 (a) is an open problem posed by M. Saïdi (cf. [S, Question]).

We will answer Problem 1.4 under the assumption that G is abelian.

2 Results

If x is a nonsingular point, M. Raynaud proved the following result (cf. [R, Théorème 1]):

Theorem 2.1. If x is a non-singular point of X_s , and G is an arbitrary p-group, then the p-rank $\sigma(f^{-1}(x))$ is equal to 0.

By Theorem 2.1, in order to resolve Problem 1.4, it is sufficient to consider the case where x is a singular point of X_s . In order to explain the results obtained in the present paper, let us introduce some notations. Write X_1 and X_2 for the irreducible components of X_s which contain $x, \psi : Y' \longrightarrow X$ for the normalization of X in the function field of Y. Let $y' \in \psi^{-1}(x)$ be a point in the inverse image of x. Write $I_{y'} \subseteq G$ for the inertia group of y'. In order to calculate the p-rank of $f^{-1}(x)$, since $Y/I_{y'} \longrightarrow X$ is finite étale over x, by replacing X by the stable model of the quotient $Y/I_{y'}$ (note that $Y/I_{y'}$ is a semi-stable curve over S (cf. [R, Appendice, Corollaire])), we may assume that G is equal to $I_{y'}$.

Thus, from the point of view of resolving Problem 1.4, we may assume without loss of generality that $G = I_{y'}$. Then $f^{-1}(x)$ is connected. With regard to Problem 1.4 (a), M. Saïdi proved the following result (cf. [S, Theorem 1]), by applying Theorem 2.1:

Theorem 2.2. If G is a cyclic p-group, then we have $\sigma(f^{-1}(x)) \leq \sharp G - 1$, where $\sharp G$ denotes the order of G.

Next, let us explain our main theorems.

Definition 2.3. Let N be a finite p-group and H a subgroup of N. We define I(H) to be a maximal set satisfied the following conditions: (i) $H \in I(H)$; (2) for any two different elements H' and H'' of I(H), neither $H' \subseteq H''$ nor $H' \supseteq H''$ holds. Write Sub(N) for the set of the subgroups of N. We set

 $M(N) := \max\{ \sharp I(N')\}_{I(N'), N' \subseteq \operatorname{Sub}(N)}.$

Let A be an elementary abelian p-group such that $\sharp A = \sharp N$. We set

$$B(\sharp N) := \sharp \mathrm{Sub}(A),$$

where $\operatorname{Sub}(A)$ denotes the set of the subgroups of A. Note that $B(\sharp N)$ depends only on $\sharp N$.

Then for Problem 1.4 (a), we have the following theorem.

Theorem 2.4. Let G be an abelian p-group. Then we have $\sigma(f^{-1}(x)) \leq M(G) \sharp G - 1 \leq B(\sharp G) \sharp G - 1$.

Remark 2.4.1. If G is a cyclic p-group, then by the definition, we have M(G) = 1. Then Theorem 2.4 is a generalization of Theorem 2.2 to the case where G is abelian.

Remark 2.4.2. Note that for any finite *p*-group *G*, we have $M(G) \leq B(\sharp G)$.

Next, let us consider Problem 1.4 (b). Let us introduce some notations. Suppose that G is an abelian p-group. It follows from [R, Appendice, Corollaire], that the quotient Y/G is a semi-stable curve over S. Write X^{sst} for Y/G, g and ϕ for the resulting morphism $g: X^{\text{sst}} \longrightarrow X$ and $\phi: Y \longrightarrow X^{\text{sst}}$ such that $f = g \circ \phi$ induced by f. We still use the notations X_1 and X_2 to denote the strict transforms of X_1 and X_2 in X^{sst} , respectively.

By the general theory of semi-stable curves, $g^{-1}(x)_{red}$ (the reduced induced closed subscheme of $g^{-1}(x)$) is a semi-stable subcurve of X_s^{sst} whose irreducible components are isomorphic to \mathbb{P}_k^1 . Write C for the semi-stable subcurve of $g^{-1}(x)_{red}$ which is a chain of projective lines $\bigcup_{i=1}^n P_i$ such that the following conditions: (i) P_i is not equal to P_j if $i \neq j$; (ii) $P_1 \cap X_1$ are $P_n \cap X_2$ are not empty; (iii) P_i meets P_{i+1} at only one point; (iv) $P_i \cap P_j$ is empty if j is not equal to i - 1, i or i + 1. Let $\{V_i\}_{i=0}^{n+1}$ be a set of irreducible components of the special fiber Y_s of Y such that the following conditions hold: (i) $\phi_r(V_i) = P_i$ if $i \notin \{0, n+1\}$; (ii) $\phi_r(V_0) = X_1$ and $\phi_r(V_{n+1}) = X_2$; (iii) the union $\bigcup_{i=0}^{n+1} V_i$ is a connected sub-semi-stable curve of the special fiber Y_s of Y. Write $I_{P_i} \subseteq G$ for the inertia subgroup of V_i . Note that since G is an abelian p-group, I_{P_i} does not depend on the choices of V_i .

If G is a cyclic p-group, Saïdi obtained an explicit formula of the p-rank $\sigma(f^{-1}(x))$ as follows (cf. [S, Proposition 1]):

Theorem 2.5. If G is a cyclic p-group, and I_{P_0} is equal to G, then we have

$$\sigma(f^{-1}(x)) = \sharp(G/I_{\min}) - \sharp(G/I_{P_{n+1}}),$$

where I_{\min} denotes the group $\cap_{i=0}^{n+1} I_{P_i}$.

We develop a general method to compute the p-ranks and generalize Saïdi's formula to the case where G is an arbitrary abelian p-group as follows:

Theorem 2.6. If G is an arbitrary abelian p-group, then we have

$$\sigma(f^{-1}(x)) = \sum_{i=1}^{n} \sharp(G/I_{P_i}) - \sum_{i=1}^{n+1} \sharp(G/(I_{P_{i-1}} + I_{P_i})) + 1.$$

Lemma 2.7. If G is a cyclic group, then there exists $0 \le u \le n+1$ such that

$$I_{P_0} \supseteq I_{P_1} \supseteq I_{P_2} \supseteq \cdots \supseteq I_{P_i} \subseteq \cdots \subseteq I_{P_{n-1}} \subseteq I_{P_n} \subseteq I_{P_{n+1}}.$$

Remark 2.7.1. If G is a cyclic p-group, since G is generated by I_{P_0} and $I_{P_{n+1}}$, we may assume that $I_{P_0} = G$. Follows Lemma 2.7 below, there exists u such that

$$I_{P_0} \supseteq I_{P_1} \supseteq I_{P_2} \supseteq \cdots \supseteq I_{P_u} \subseteq \cdots \subseteq I_{P_{n-1}} \subseteq I_{P_n} \subseteq I_{P_{n+1}}$$

Then we obtain

$$\sharp(G/I_{P_i}) - \sharp(G/(I_{P_{i-1}} + I_{P_i})) - \sharp(G/(I_{P_{i+1}} + I_{P_i})) + 1 = -\sharp(G/(I_{P_{i-1}})) + 1$$
(resp. $\sharp(G/(I_{P_{i+1}} + I_{P_i})) - 1 = \sharp(G/(I_{P_i})) - 1)$

if i < u,

$$\sharp(G/I_{P_i}) - \sharp(G/(I_{P_{i-1}} + I_{P_i})) - \sharp(G/(I_{P_{i+1}} + I_{P_i})) + 1 = -\sharp(G/(I_{P_{i+1}})) + 1$$

(resp.
$$\sharp(G/(I_{P_{i+1}} + I_{P_i})) - 1 = \sharp(G/(I_{P_{i+1}})) - 1)$$

if i > u and

$$\sharp(G/I_{P_i}) - \sharp(G/(I_{P_{i-1}} + I_{P_i})) - \sharp(G/(I_{P_{i+1}} + I_{P_i})) + 1 = \sharp(G/I_{P_t}) - \sharp(G/(I_{P_{t-1}}) - \sharp(G/(I_{P_{t+1}}) + 1)$$

$$(\text{resp. } \sharp(G/(I_{P_{i+1}} + I_{P_i})) - 1 = \sharp(G/(I_{P_{t+1}})) - 1)$$

if i = u. Thus, by applying Theorem 2.6, we obtain

$$\sigma(f^{-1}(x)) = \sharp(G/I_{P_u}) - \sharp(G/I_{P_{n+1}}).$$

Then Theorem 2.6 is a generalization of Theorem 2.5.

Acknowledgements

第10回福岡数論研究集会において発表の機会を頂いたことに対して,第10回福岡数論研究集 会の運営にご尽力なさった関係者の皆様に感謝いたします.

References

- [L] Q. Liu, Stable reduction of finite covers of curves, Compositio Math. 142 (2006), 101– 118.
- [R] M. Raynaud, p-groupes et réduction semi-stable des courbes, In: The Grothendieck Festschrift, Vol. III, 179–197, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990.
- [S] M. Saïdi, p-rank and semi-stable reduction of curves, C. R. Acad. Sci. Paris, t. 326, Série I, 63–68, 1998.

- [T] A. Tamagawa, Resolution of nonsingularities of families of curves, Publ. Res. Inst. Math. Sci. 40 (2004), 1291–1336.
- [Y1] Y. Yang, Degeneration of period matrices of stable curves, RIMS preprint, 1835, Research Institute for Mathematical Sciences, 2015.
- [Y2] Y. Yang, On the existence of vertical fibers of coverings of curves over a complete discrete valuation ring, RIMS preprint, 1843, Research Institute for Mathematical Sciences, 2016.