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Abstract
For a nonnegative integer N, define hypergeometric Euler numbers Ey ,, by
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where 1 Fy(a; b, ¢; z) is the hypergeometric function defined by
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Here, ()™ is the rising factorial, defined by (z)™ = z(z +1)---(z +n —1) (n > 1)
with (2)(®) = 1. When N = 0, then E,, = Ej,, are classical Euler numbers. Hyperge-
ometric Euler numbers Ey ,, are analogues of hypergeometric Bernoulli numbers By,
and hypergeometric Cauchy numbers cy ,,. In this paper, we shall consider several ex-
pressions and sums of products of hypergeometric Euler numbers. We also introduce
complementary hypergeometric Euler numbers and give some characteristic properties.

1 Introduction

Euler numbers E,, are defined by the generating function
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One of the different definitions is
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(see e.g. [1]). There are several generalizations have been studied based upon one of these
expression. For example, one kind of poly-Euler numbers is a typical generalization, in the
aspect of L-functions ([14, 15, 16]). Other generalizations can be found in [2, 12] and the
reference therein.

A different type of generalization is based upon hypergeometric functions. For N > 1,
define hypergeometric Bernoulli numbers By, (see [6, 7, 8]) by
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is the confluent hypergeometric function with (z)™ = z(z +1)---(z +n —1) (n > 1) and
()® =1. When N =1, B, = By, are classical Bernoulli numbers defined by
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In addition, define hypergeometric Cauchy numbers ¢y, (see [9]) by
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where
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is the Gauss hypergeometric function. When N =1, ¢,, = ¢y, are classical Cauchy numbers
defined by
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This is a different generalization of the classical Cauchy numbers. Other kind of generaliza-

tions can be seen in [11] and the references therein.
Now, for N > 0 define hypergeometric Euler numbers En, (n =0,1,2,...) by
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where 1 Fy(a; b, ¢; z) is the hypergeometric function defined by
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When N = 0, then E, = Ey, are classical Euler numbers defined in (1). We list the
numbers Ey,, for 0 < N <6 and 0 <n < 12 in Table 1. From (3) we see that Ey, = 0 if
n is odd. Similarly to poly-Euler numbers ([14, 15, 16]), hypergeometric Euler numbers are
rational numbers, though the classical Euler numbers are integers.

From (2) and (3), we have
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Table 1: The numbers Ey,, for 0 <N <6 and 0 <n <12

n |0 2 1 6 8

Eom | 1 -1 5 —61 1385
Ein| 1 -1/6 1/10 —5/42 7/30
Eyn, | 1 —1/15  13/1050 —1/350 —31/173250
Es, | 1 —1/28 17/5880 —29/362208 —863,/6420960
Ein | 1 —1/45  7/7425 53/2027025 —443/22052250
Es, | 1 —1/66 25/66066  47/2906904 —16945/5300012718
Een | 1 —1/91 29/165620 1205/153728484  —2279/4467168338
n 10 12

Eon —50521 2702765

Ein ~15/22 7601,/2730

Eop 1343 /750750 —6137/2388750

Esp, 6499/131843712 6997213 /156894017280
Eyn —10157/4873547250 558599021 /126395447928750
Es, | —AT5767/492312202472 71844089/268802511689712
Egn | —6430761/25339270989032 —17675104079/4917799642149532320

Hence, for n > 1, we have
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Thus, we have the following proposition. Note that Ex, = 0 when n is odd.
Proposition 1.
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By using the identity in Proposition 1 or the identity
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we can obtain the values of En, (n=0,2,4,...). We record the first few values of E ,:
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Eye— 16 - 81(32N7 — 8N6 — 1252N5 — 3914N* — 7T69N3 + 12667N?2 + 18954 N + 8310)

(2N + 1)4(2N + 2)X(2N + 3)2(2N + 4)2(2N + 6)(2N + 7)(2N +8)

We have an explicit expression of Fy , for each even n:
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Theorem 1. For N >0 and n > 1 we have
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The proof can be done by induction for n. However, we shall give a different proof by
using the Hasse-Teichmiiller derivative in the next section.

2 Hasse-Teichmiiller derivative

We define the Hasse-Teichmiiller derivative H(™ of order n by
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for > 07 pcmz™ € F((2)), where R is an integer and ¢, € F for any m > R.
The Hasse-Teichmiiller derivatives satisfy the product rule [17], the quotient rule [4] and
the chain rule [5]. One of the product rules can be described as follows.

Lemma 1. For f; e F[[z]] (i=1,...,k) with k > 2 and for n > 1, we have

HY(fi-fi) = > HO(f) - HW(f).
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The quotient rules can be described as follows.

Lemma 2. For f € F[[2]]\{0} and n > 1, we have
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By using the Hasse-Teichmiller derivative of order n, we shall obtain some explicit
expressions of the hypergeometric Euler numbers.

Proof of Theorem 1. Put
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for simplicity. Note that
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Hence, by using Lemma 2 (4), we have
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We can express the hypergeometric Euler numbers also in terms of the binomial coefhi-
cients. In fact, by using Lemma 2 (5) instead of Lemma 2 (4) in the above proof, we obtain
a little different expression from one in Theorem 1.

Proposition 2. For N > 0 and even n > 2,
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For example, when n = 4, we get
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3 Complementary hypergeometric Euler numbers

We introduce the complementary hypergeometric Fuler numbers EN,H by
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as an analogous concept of (2). When n = 0, E, = Eo,n are the complementary Euler

numbers defined by
o "
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as an analogous concept of (1). In [13], these numbers are called weighted Bernoulli numbers,
but this naming means different in other literatures.
From the definition (6), we have
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Therefore, the complementary hypergeometric Euler numbers satisfy the recurrence relation
for even n > 2
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By using the Hasse-Teichmiiller derivative or by proving by induction, we have the
following.

Theorem 2. For N > 0 and n > 1 we have
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Some initial values of ENm (n=0,2,4,...), we have
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4 Expressions in terms of the determinants

It is known that the Euler numbers are given by the determinant (cf. [3, p.52]):

1
1
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This can be generalized to the determinant expression of hypergeometric Euler numbers.
Namely, when N = 0 in Theorem 3, we get (8) as a special case.

Theorem 3. For N >0 and n > 1, we have

(2N)! 1
(2N+2)!
(2N)!
EN,Qn _ (—1)”(2”)! (2N+4)!
: 1
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Proof. In Proposition 1, it is shown that hypergeometric Euler numbers Ey , satisfy the
relation:

n/2 1
Engoi =0 > 9]
; (2N 4+ n — 24)!(2i)! N,2i (n > 2 is even)
with Fno = 1. The proof is done by using this relation. The detail is similar to the next
theorem. i

It turns that ENQ” can be expressed by the determinant too.

Theorem 4. For N > 0 and n > 1, we have

(2N+1)! 1
(2N+3)!
R (2N+1)!
EN,Qn _ (—1)”(271)! (2N+5)!
Z : 1
(2N+1)! (2N+1)!  (2N+1)!
2N+2n+1)! 7 (2N+5)! (2N+3)!
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Proof. When n =1, we have
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When N = 0 in Theorem 4, we obtain the determinant expression of Euler numbers of
the second kind, which corresponds with that of Euler numbers in (8).

Corollary 1. For n > 1, we have
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5 Sums of products of hypergeometric Euler numbers

Put
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for simplicity. Then by
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Comparing the coefficients, we obtain a result about the sums of products.

Theorem 5. For N > 1 and n > 0,
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Using (10) and (11) again, we have
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we have
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Comparing the coefficients, we get a result about the sums of products for trinomial coeffi-
cients.

Theorem 6. For N > 1 and n > 0,
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6 Sums of products of complementary hypergeometric Euler

numbers
Put -
FosS _CGNADL
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so that
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1 1/1 t d1
F2 F\pFp 2N+1dtfp

> tm 2N —k+1~ tk
= Enom— L R —
(n;) N, m!) (Z ON + 1 N”%!)

o0 n
n\2N —k+1~ t"
= ———— FENkENnk—-
2. (k) ON 41~ VRENnskg
n=0 k=0
Hence, as an analogue of Theorem 5, we have the following.

Theorem 7. For N > 1 and n > 0,
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We then have

Since
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we have the following result as an analogue of Theorem 6.
Theorem 8. For N > 1 andn > 0,
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One can continue to obtain the sum of four or more products, though the results seem
to become more complicated.
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