Euler numbers and related numbers, and their applications

Takao Komatsu (Wuhan University)

Abstract

For a nonnegative integer N, define hypergeometric Euler numbers $E_{N, n}$ by $$
\frac{1}{{ }_{1} F_{2}\left(1 ; N+1,(2 N+1) / 2 ; t^{2} / 4\right)}=\sum_{n=0}^{\infty} E_{N, n} \frac{t^{n}}{n!},
$$

where ${ }_{1} F_{2}(a ; b, c ; z)$ is the hypergeometric function defined by

$$
{ }_{1} F_{2}(a ; b, c ; z)=\sum_{n=0}^{\infty} \frac{(a)^{(n)}}{(b)^{(n)}(c)^{(n)}} \frac{z^{n}}{n!} .
$$

Here, $(x)^{(n)}$ is the rising factorial, defined by $(x)^{(n)}=x(x+1) \cdots(x+n-1)(n \geq 1)$ with $(x)^{(0)}=1$. When $N=0$, then $E_{n}=E_{0, n}$ are classical Euler numbers. Hypergeometric Euler numbers $E_{N, n}$ are analogues of hypergeometric Bernoulli numbers $B_{N, n}$ and hypergeometric Cauchy numbers $c_{N, n}$. In this paper, we shall consider several expressions and sums of products of hypergeometric Euler numbers. We also introduce complementary hypergeometric Euler numbers and give some characteristic properties.

1 Introduction

Euler numbers E_{n} are defined by the generating function

$$
\begin{equation*}
\frac{1}{\cosh t}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!} . \tag{1}
\end{equation*}
$$

One of the different definitions is

$$
\frac{2}{e^{t}+1}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!}
$$

(see e.g. [1]). There are several generalizations have been studied based upon one of these expression. For example, one kind of poly-Euler numbers is a typical generalization, in the aspect of L-functions ($[14,15,16]$). Other generalizations can be found in $[2,12]$ and the reference therein.

A different type of generalization is based upon hypergeometric functions. For $N \geq 1$, define hypergeometric Bernoulli numbers $B_{N, n}$ (see [6, 7, 8]) by

$$
\frac{1}{{ }_{1} F_{1}(1 ; N+1 ; t)}=\frac{t^{N} / N!}{e^{t}-\sum_{n=0}^{N-1} t^{n} / n!}=\sum_{n=0}^{\infty} B_{N, n} \frac{t^{n}}{n!},
$$

where

$$
{ }_{1} F_{1}(a ; b ; z)=\sum_{n=0}^{\infty} \frac{(a)^{(n)}}{(b)^{(n)}} \frac{z^{n}}{n!}
$$

is the confluent hypergeometric function with $(x)^{(n)}=x(x+1) \cdots(x+n-1)(n \geq 1)$ and $(x)^{(0)}=1$. When $N=1, B_{n}=B_{1, n}$ are classical Bernoulli numbers defined by

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}
$$

In addition, define hypergeometric Cauchy numbers $c_{N, n}$ (see [9]) by

$$
\frac{1}{{ }_{2} F_{1}(1, N ; N+1 ;-t)}=\frac{(-1)^{N-1} t^{N} / N}{\log (1+t)-\sum_{n=1}^{N-1}(-1)^{n-1} t^{n} / n}=\sum_{n=0}^{\infty} c_{N, n} \frac{t^{n}}{n!},
$$

where

$$
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)^{(n)}(b)^{(n)}}{(c)^{(n)}} \frac{z^{n}}{n!}
$$

is the Gauss hypergeometric function. When $N=1, c_{n}=c_{1, n}$ are classical Cauchy numbers defined by

$$
\frac{t}{\log (1+t)}=\sum_{n=0}^{\infty} c_{n} \frac{t^{n}}{n!}
$$

This is a different generalization of the classical Cauchy numbers. Other kind of generalizations can be seen in [11] and the references therein.

Now, for $N \geq 0$ define hypergeometric Euler numbers $E_{N, n}(n=0,1,2, \ldots)$ by

$$
\begin{equation*}
\frac{1}{{ }_{1} F_{2}\left(1 ; N+1,(2 N+1) / 2 ; t^{2} / 4\right)}=\sum_{n=0}^{\infty} E_{N, n} \frac{t^{n}}{n!}, \tag{2}
\end{equation*}
$$

where ${ }_{1} F_{2}(a ; b, c ; z)$ is the hypergeometric function defined by

$$
{ }_{1} F_{2}(a ; b, c ; z)=\sum_{n=0}^{\infty} \frac{(a)^{(n)}}{(b)^{(n)}(c)^{(n)}} \frac{z^{n}}{n!} .
$$

It is seen that

$$
\begin{equation*}
\cosh t-\sum_{n=0}^{N-1} \frac{t^{2 n}}{(2 n)!}=\frac{t^{2 N}}{(2 N)!} \sum_{n=0}^{\infty} \frac{(2 N)!n!}{(2 n+2 N)!} \frac{\left(t^{2}\right)^{n}}{n!}=\frac{t^{2 N}}{(2 N)!}{ }^{1} F_{2}\left(1 ; N+1, \frac{2 N+1}{2} ; \frac{t^{2}}{4}\right) \tag{3}
\end{equation*}
$$

When $N=0$, then $E_{n}=E_{0, n}$ are classical Euler numbers defined in (1). We list the numbers $E_{N, n}$ for $0 \leq N \leq 6$ and $0 \leq n \leq 12$ in Table 1. From (3) we see that $E_{N, n}=0$ if n is odd. Similarly to poly-Euler numbers ([14, 15, 16]), hypergeometric Euler numbers are rational numbers, though the classical Euler numbers are integers.

From (2) and (3), we have

$$
\begin{aligned}
\frac{t^{2 N}}{(2 N)!} & =\left(\sum_{n=N}^{\infty} \frac{t^{2 n}}{(2 n)!}\right)\left(\sum_{n=0}^{\infty} E_{N, n} \frac{t^{n}}{n!}\right) \\
& =t^{2 N}\left(\sum_{n=0}^{\infty} \frac{\frac{1+(-1)^{n}}{2} t^{n}}{(n+2 N)!}\right)\left(\sum_{n=0}^{\infty} E_{N, n} \frac{t^{n}}{n!}\right) \\
& =t^{2 N} \sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} \frac{\frac{1+(-1)^{n-i}}{2}}{(2 N+n-i)!} \frac{E_{N, i}}{i!}\right) t^{n} .
\end{aligned}
$$

Table 1: The numbers $E_{N, n}$ for $0 \leq N \leq 6$ and $0 \leq n \leq 12$

n	0	2	4	6	8
$E_{0, n}$	1	-1	5	-61	1385
$E_{1, n}$	1	$-1 / 6$	1/10	-5/42	7/30
$E_{2, n}$	1	-1/15	13/1050	-1/350	-31/173250
$E_{3, n}$	1	$-1 / 28$	17/5880	-29/362208	-863/6420960
$E_{4, n}$	1	-1/45	7/7425	53/2027025	-443/22052250
$E_{5, n}$	1	$-1 / 66$	25/66066	47/2906904	-16945/5300012718
$E_{6, n}$	1	-1/91	29/165620	1205/153728484	-2279/4467168888
n	10			12	
$E_{0, n}$	-50521			2702765	
$E_{1, n}$	$-15 / 22$			7601/2730	
$E_{2, n}$	1343/750750			-6137/2388750	
$E_{3, n}$	6499/131843712			$6997213 / 156894017280$	
$E_{4, n}$	-10157/4873547250			$558599021 / 126395447928750$	
$E_{5, n}$	-475767/492312292472			71844089/268802511689712	
$E_{6, n}$	-6430761/25339270989032			$2-17675104079 / 4917799642149532320$	

Hence, for $n \geq 1$, we have

$$
\sum_{i=0}^{n} \frac{1+(-1)^{n-i}}{(2 N+n-i)!i!} E_{N, i}=0
$$

Thus, we have the following proposition. Note that $E_{N, n}=0$ when n is odd.

Proposition 1.

$$
\sum_{i=0}^{n / 2} \frac{1}{(2 N+n-2 i)!(2 i)!} E_{N, 2 i}=0 \quad(n \geq 2 \text { is even })
$$

and $E_{N, 0}=1$.
By using the identity in Proposition 1 or the identity

$$
E_{N, n}=-n!(2 N)!\sum_{i=0}^{n / 2-1} \frac{E_{N, 2 i}}{(2 N+n-2 i)!(2 i)!}
$$

we can obtain the values of $E_{N, n}(n=0,2,4, \ldots)$. We record the first few values of $E_{N, n}$:

$$
\begin{aligned}
& E_{N, 2}=-\frac{2}{(2 N+1)(2 N+2)} \\
& E_{N, 4}=\frac{2 \cdot 4!(4 N+5)}{(2 N+1)^{2}(2 N+2)^{2}(2 N+3)(2 N+4)} \\
& E_{N, 6}=\frac{\left.4 \cdot 6!\left(8 N^{3}-2 N^{2}-65 N-61\right)\right)}{(2 N+1)^{3}(2 N+2)^{3}(2 N+3)(2 N+4)(2 N+5)(2 N+6)} \\
& E_{N, 8}=\frac{16 \cdot 8!\left(32 N^{7}-8 N^{6}-1252 N^{5}-3914 N^{4}-769 N^{3}+12667 N^{2}+18954 N+8310\right)}{(2 N+1)^{4}(2 N+2)^{4}(2 N+3)^{2}(2 N+4)^{2}(2 N+6)(2 N+7)(2 N+8)}
\end{aligned}
$$

We have an explicit expression of $E_{N, n}$ for each even n :

Theorem 1. For $N \geq 0$ and $n \geq 1$ we have

$$
E_{N, 2 n}=(2 n)!\sum_{r=1}^{n}(-1)^{r} \sum_{\substack{i_{1}+\cdots+i_{r}=n \\ i_{1}, \ldots, i_{r} \geq 1}} \frac{((2 N)!)^{r}}{\left(2 N+2 i_{1}\right)!\cdots\left(2 N+2 i_{r}\right)!}
$$

The proof can be done by induction for n. However, we shall give a different proof by using the Hasse-Teichmüller derivative in the next section.

2 Hasse-Teichmüller derivative

We define the Hasse-Teichmüller derivative $H^{(n)}$ of order n by

$$
H^{(n)}\left(\sum_{m=R}^{\infty} c_{m} z^{m}\right)=\sum_{m=R}^{\infty} c_{m}\binom{m}{n} z^{m-n}
$$

for $\sum_{m=R}^{\infty} c_{m} z^{m} \in \mathbb{F}((z))$, where R is an integer and $c_{m} \in \mathbb{F}$ for any $m \geq R$.
The Hasse-Teichmüller derivatives satisfy the product rule [17], the quotient rule [4] and the chain rule [5]. One of the product rules can be described as follows.

Lemma 1. For $f_{i} \in \mathbb{F}[[z]](i=1, \ldots, k)$ with $k \geq 2$ and for $n \geq 1$, we have

$$
H^{(n)}\left(f_{1} \cdots f_{k}\right)=\sum_{\substack{i_{1}, \ldots, i_{k} \geq 0 \\ i_{1}+\cdots+i_{k}=n}} H^{\left(i_{1}\right)}\left(f_{1}\right) \cdots H^{\left(i_{k}\right)}\left(f_{k}\right)
$$

The quotient rules can be described as follows.
Lemma 2. For $f \in \mathbb{F}[[z]] \backslash\{0\}$ and $n \geq 1$, we have

$$
\begin{align*}
H^{(n)}\left(\frac{1}{f}\right) & =\sum_{k=1}^{n} \frac{(-1)^{k}}{f^{k+1}} \sum_{\substack{i_{1}, \ldots, i_{k} \geq 1 \\
i_{1}++i_{k}=n}} H^{\left(i_{1}\right)}(f) \cdots H^{\left(i_{k}\right)}(f) \tag{4}\\
& =\sum_{k=1}^{n}\binom{n+1}{k+1} \frac{(-1)^{k}}{f^{k+1}} \sum_{\substack{i_{1}, \ldots, i_{k} \geq 0 \\
i_{1}+\ldots i_{k}=n}} H^{\left(i_{1}\right)}(f) \cdots H^{\left(i_{k}\right)}(f) . \tag{5}
\end{align*}
$$

By using the Hasse-Teichmüller derivative of order n, we shall obtain some explicit expressions of the hypergeometric Euler numbers.

Proof of Theorem 1. Put

$$
F:={ }_{1} F_{2}\left(1 ; N+1, \frac{2 N+1}{2} ; \frac{t^{2}}{4}\right)=\sum_{n=0}^{\infty} \frac{(2 N)!}{(2 N+2 n)!} t^{2 n}
$$

for simplicity. Note that

$$
\left.H^{(i)}(F)\right|_{t=0}=\left.\sum_{j=0}^{\infty} \frac{(2 N)!}{(2 N+2 j)!}\binom{2 j}{i} t^{2 j-i}\right|_{t=0}= \begin{cases}(2 N)!/(2 N+i)! & \text { if } i \text { is even } \\ 0 & \text { if } i \text { is odd }\end{cases}
$$

Hence, by using Lemma 2 (4), we have

$$
\begin{aligned}
\frac{E_{N, n}}{n!} & =\left.H^{(n)}\left(\frac{1}{F}\right)\right|_{t=0} \\
& =\left.\left.\left.\sum_{k=1}^{n} \frac{(-1)^{k}}{F^{k+1}}\right|_{t=0} \sum_{\substack{i_{1}, \ldots, i_{k} \geq 1 \\
i_{1}+\cdots+i_{k}=n}} H^{\left(i_{1}\right)}(F)\right|_{t=0} \cdots H^{\left(i_{k}\right)}(F)\right|_{t=0} \\
& =\sum_{k=1}^{n}(-1)^{k} \sum_{\substack{i_{1}, \ldots, i_{k} \geq 1 \\
2\left(i_{1}+\cdots+i_{k}\right)=n}} \frac{((2 N)!)^{k}}{\left(2 N+2 i_{1}\right)!\cdots\left(2 N+2 i_{k}\right)!}
\end{aligned}
$$

We can express the hypergeometric Euler numbers also in terms of the binomial coefficients. In fact, by using Lemma 2 (5) instead of Lemma 2 (4) in the above proof, we obtain a little different expression from one in Theorem 1.

Proposition 2. For $N \geq 0$ and even $n \geq 2$,

$$
E_{N, n}=n!\sum_{k=1}^{n}(-1)^{k}\binom{n+1}{k+1} \sum_{\substack{i_{1}, \ldots, i_{k} \geq 0 \\ i_{1}+\cdots+i_{k}=n / 2}} \frac{((2 N)!)^{k}}{\left(2 N+2 i_{1}\right)!\cdots\left(2 N+2 i_{k}\right)!} .
$$

For example, when $n=4$, we get

$$
\begin{aligned}
E_{4}= & 4!\left(-\binom{5}{2} \frac{1}{4!}+\binom{5}{3}\left(\frac{2}{4!}+\frac{1}{2!2!}\right)-\binom{5}{4}\left(\frac{3}{4!}+\frac{3}{2!2!}\right)+\binom{5}{5}\left(\frac{4}{4!}+\frac{6}{2!2!}\right)\right) \\
= & 5 \\
E_{1,4}= & 4!\left(-\binom{5}{2} 2 \frac{1}{6!}+\binom{5}{3} 2^{2}\left(\frac{2}{6!2!}+\frac{1}{4!4!}\right)\right. \\
& \left.\quad-\binom{5}{4} 2^{3}\left(\frac{3}{6!2!2!}+\frac{3}{4!4!2!}\right)+\binom{5}{5} 2^{4}\left(\frac{4}{6!2!2!2!}+\frac{6}{4!4!2!2!}\right)\right) \\
= & \frac{1}{10}, \\
E_{2,4}= & 4!\left(-\binom{5}{2} 4!\frac{1}{8!}+\binom{5}{3}(4!)^{2}\left(\frac{2}{8!4!}+\frac{1}{6!6!}\right)\right. \\
& \left.\quad-\binom{5}{4}(4!)^{3}\left(\frac{3}{8!4!4!}+\frac{3}{6!6!4!}\right)+\binom{5}{5}(4!)^{4}\left(\frac{4}{8!4!4!4!}+\frac{6}{6!6!4!4!}\right)\right) \\
= & \frac{13}{1050}, \\
E_{3,4}= & 4!\left(-\binom{5}{2} 6!\frac{1}{10!}+\binom{5}{3}(6!)^{2}\left(\frac{2}{10!6!}+\frac{1}{8!8!}\right)\right. \\
& \left.\quad-\binom{5}{4}(6!)^{3}\left(\frac{3}{10!6!6!}+\frac{3}{8!8!6!}\right)+\binom{5}{5}(6!)^{4}\left(\frac{4}{10!6!6!6!}+\frac{6}{8!8!6!6!}\right)\right) \\
= & \frac{17}{5880} .
\end{aligned}
$$

3 Complementary hypergeometric Euler numbers

We introduce the complementary hypergeometric Euler numbers $\widehat{E}_{N, n}$ by

$$
\begin{align*}
\frac{t^{2 N+1} /(2 N+1)!}{\sinh t-\sum_{n=0}^{N-1} t^{2 n+1} /(2 n+1)!} & =\frac{1}{{ }_{1} F_{2}\left(1 ; N+1,(2 N+3) / 2 ; t^{2} / 4\right)} \\
& =\sum_{n=0}^{\infty} \widehat{E}_{N, n} \frac{t^{n}}{n!} \tag{6}
\end{align*}
$$

as an analogous concept of (2). When $n=0, \widehat{E}_{n}=\widehat{E}_{0, n}$ are the complementary Euler numbers defined by

$$
\frac{t}{\sinh t}=\sum_{n=0}^{\infty} \widehat{E}_{n} \frac{t^{n}}{n!}
$$

as an analogous concept of (1). In [13], these numbers are called weighted Bernoulli numbers, but this naming means different in other literatures.

From the definition (6), we have

$$
\begin{aligned}
\frac{t^{2 N+1}}{(2 N+1)!} & =\left(\sum_{n=N}^{\infty} \frac{t^{2 n+1}}{(2 n+1)!}\right)\left(\sum_{n=0}^{\infty} \widehat{E}_{N, n} \frac{t^{n}}{n!}\right) \\
& =t^{2 N+1}\left(\sum_{n=0}^{\infty} \frac{\frac{1+(-1)^{n}}{2} t^{n}}{(2 N+n+1)!}\right)\left(\sum_{n=0}^{\infty} \widehat{E}_{N, n} \frac{t^{n}}{n!}\right) \\
& =t^{2 N+1} \sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} \frac{\frac{1+(-1)^{n-i}}{2}}{(2 N+n-i+1)!} \frac{\widehat{E}_{N, i}}{i!}\right) t^{n} .
\end{aligned}
$$

Therefore, the complementary hypergeometric Euler numbers satisfy the recurrence relation for even $n \geq 2$

$$
\sum_{i=0}^{n / 2} \frac{\widehat{E}_{N, 2 i}}{(2 N+n-2 i+1)!(2 i)!}=0
$$

or for $n \geq 1$

$$
\begin{equation*}
\widehat{E}_{N, 2 n}=-(2 n)!(2 N+1)!\sum_{i=0}^{n-1} \frac{\widehat{E}_{N, 2 i}}{(2 N+2 n-2 i+1)!(2 i)!} \tag{7}
\end{equation*}
$$

By using the Hasse-Teichmüller derivative or by proving by induction, we have the following.

Theorem 2. For $N \geq 0$ and $n \geq 1$ we have

$$
\begin{aligned}
\widehat{E}_{N, n} & =n!\sum_{k=1}^{n}(-1)^{k} \sum_{\substack{i_{1}, \ldots, i_{k} \geq 1 \\
i_{1}+\cdots+i_{k}=n / 2}} \frac{((2 N+1)!)^{k}}{\left(2 N+2 i_{1}+1\right)!\cdots\left(2 N+2 i_{k}+1\right)!} \\
& =n!\sum_{k=1}^{n}(-1)^{k}\binom{n+1}{k+1} \sum_{\substack{i_{1}, \ldots, i_{k} \geq 0 \\
i_{1}+\cdots+i_{k}=n / 2}} \frac{((2 N+1)!)^{k}}{\left(2 N+2 i_{1}+1\right)!\cdots\left(2 N+2 i_{k}+1\right)!}
\end{aligned}
$$

Some initial values of $\widehat{E}_{N, n}(n=0,2,4, \ldots)$, we have

$$
\begin{aligned}
\widehat{E}_{N, 2} & =-\frac{2}{(2 N+2)(2 N+3)} \\
\widehat{E}_{N, 4} & =\frac{2 \cdot 4!(4 N+7)}{(2 N+2)^{2}(2 N+3)^{2}(2 N+4)(2 N+5)} \\
\widehat{E}_{N, 6} & =\frac{\left.4 \cdot 6!\left(8 N^{3}+10 N^{2}-61 N-93\right)\right)}{(2 N+2)^{3}(2 N+3)^{3}(2 N+4)(2 N+5)(2 N+6)(2 N+7)} \\
\widehat{E}_{N, 8} & =\frac{8 \cdot 8!\left(32 N^{6}+8 N^{5}-1132 N^{4}-3538 N^{3}-1063 N^{2}+7280 N+6858\right)}{(2 N+2)^{4}(2 N+3)^{4}(2 N+4)^{2}(2 N+5)^{2}(2 N+7)(2 N+8)(2 N+9)} .
\end{aligned}
$$

4 Expressions in terms of the determinants

It is known that the Euler numbers are given by the determinant ($c f .[3, \mathrm{p} .52]$):

$$
E_{2 n}=(-1)^{n}(2 n)!\left|\begin{array}{ccccc}
\frac{1}{2!} & 1 & & & \tag{8}\\
\frac{1}{4!} & \frac{1}{2!} & 1 & & \\
\vdots & & \ddots & \ddots & \\
\frac{1}{(2 n-2)!} & \frac{1}{(2 n-4)!} & & \frac{1}{2!} & 1 \\
\frac{1}{(2 n)!} & \frac{1}{(2 n-2)!} & \cdots & \frac{1}{4!} & \frac{1}{2!}
\end{array}\right|
$$

This can be generalized to the determinant expression of hypergeometric Euler numbers. Namely, when $N=0$ in Theorem 3, we get (8) as a special case.

Theorem 3. For $N \geq 0$ and $n \geq 1$, we have

$$
E_{N, 2 n}=(-1)^{n}(2 n)!\left|\begin{array}{cccc}
\frac{(2 N)!}{(2 N+2)!} & 1 & & \\
\frac{(2 N)!}{(2 N+4)!} & \ddots & \ddots & \\
\vdots & & \ddots & 1 \\
\frac{(2 N)!}{(2 N+2 n)!} & \cdots & \frac{(2 N)!}{(2 N+4)!} & \frac{(2 N)!}{(2 N+2)!}
\end{array}\right|
$$

Proof. In Proposition 1, it is shown that hypergeometric Euler numbers $E_{N, n}$ satisfy the relation:

$$
\sum_{i=0}^{n / 2} \frac{1}{(2 N+n-2 i)!(2 i)!} E_{N, 2 i}=0 \quad(n \geq 2 \text { is even })
$$

with $E_{N, 0}=1$. The proof is done by using this relation. The detail is similar to the next theorem.

It turns that $\widehat{E}_{N, 2 n}$ can be expressed by the determinant too.
Theorem 4. For $N \geq 0$ and $n \geq 1$, we have

$$
\widehat{E}_{N, 2 n}=(-1)^{n}(2 n)!\left|\begin{array}{cccc}
\frac{(2 N+1)!}{(2 N+3)!} & 1 & & \\
\frac{(2 N+1)!}{(2 N+5)!} & \ddots & \ddots & \\
\vdots & & \ddots & 1 \\
\frac{(2 N+1)!}{(2 N+2 n+1)!} & \cdots & \frac{(2 N+1)!}{(2 N+5)!} & \frac{(2 N+1)!}{(2 N+3)!}
\end{array}\right|
$$

Proof. When $n=1$, we have

$$
\widehat{E}_{N, 2}=-\frac{2}{(2 N+1)(2 N+2)} .
$$

For convenience, put

$$
\left|A_{N, 2 n}\right|=\left|\begin{array}{cccc}
\frac{(2 N+1)!}{(2 N+3)!} & 1 & & \\
\frac{(2 N+1)!}{(2 N+5)!} & \ddots & \ddots & \\
\vdots & & \ddots & 1 \\
\frac{(2 N+1)!}{(2 N+2 n+1)!} & \cdots & \frac{(2 N+1)!}{(2 N+5)!} & \frac{(2 N+1)!}{(2 N+3)!}
\end{array}\right|
$$

with $\left|A_{N, 0}\right|=1$. Then, using the induction with (7), we have

$$
\begin{aligned}
& (-1)^{n}(2 n)!\left|A_{N, 2 n}\right| \\
& =(-1)^{n}(2 n)!\left(\begin{array}{ccc}
\frac{(2 N+1)!}{(2 N+3)!}\left|A_{N, 2 n-2}\right|-\left\lvert\, \begin{array}{ccc}
\frac{(2 N+1)!}{(2 N+3)!} & 1 & \\
\vdots \\
\frac{(2 N+1)!}{(2 N+2 n-3)!} & \cdots & \frac{(2 N+1)!}{(2 N+3)!} \\
\frac{(2 N+1)!}{(2 N+2 n+1)!} & \cdots & \frac{(2 N+1)!}{(2 N+5)!}
\end{array}\right. & \frac{(2 N+1)!}{(2 N+3)!}
\end{array}\right) \\
& =(-1)^{n}(2 n)!\left(\frac{(2 N+1)!}{(2 N+3)!}\left|A_{N, 2 n-2}\right|-\frac{(2 N+1)!}{(2 N+5)!}\left|A_{N, 2 n-4}\right|\right. \\
& \left.\quad+\cdots+\frac{(-1)^{n}(2 N+1)!}{(2 N+2 n-1)!}\left|A_{N, 2}\right|+\frac{(-1)^{n+1}(2 N+1)!}{(2 N+2 n+1)!}\right) \\
& = \\
& =-(2 n)!(2 N+1)!\sum_{i=0}^{n-1} \frac{\widehat{E}_{N, 2 i}}{(2 N+2 n-2 i+1)!(2 i)!} \\
& =\widehat{E}_{N, 2 n} .
\end{aligned}
$$

When $N=0$ in Theorem 4, we obtain the determinant expression of Euler numbers of the second kind, which corresponds with that of Euler numbers in (8).

Corollary 1. For $n \geq 1$, we have

$$
\widehat{E}_{2 n}=(-1)^{n}(2 n)!\left|\begin{array}{cccc}
\frac{1}{3!} & 1 & & \\
\frac{1}{5!} & \ddots & \ddots & \\
\vdots & & \ddots & 1 \\
\frac{1}{(2 n+1)!} & \cdots & \frac{1}{5!} & \frac{1}{3!}
\end{array}\right|
$$

5 Sums of products of hypergeometric Euler numbers

Put

$$
F:={ }_{1} F_{2}\left(1 ; N+1, \frac{2 N+1}{2} ; \frac{t^{2}}{4}\right)=\sum_{n=0}^{\infty} \frac{(2 N)!}{(2 N+2 n)!} t^{2 n}
$$

for simplicity. Then by

$$
\frac{d}{d t} F=\sum_{n=0}^{\infty} \frac{(2 n)(2 N)!}{(2 N+2 n)!} t^{2 n-1}
$$

we have

$$
\begin{equation*}
2 N F+t \frac{t}{d t} F=2 N \cdot{ }_{1} F_{2}\left(1 ; N, \frac{2 N+1}{2} ; \frac{t^{2}}{4}\right) . \tag{9}
\end{equation*}
$$

Since

$$
F^{*}:={ }_{1} F_{2}\left(1 ; N, \frac{2 N+1}{2} ; \frac{t^{2}}{4}\right)=\sum_{n=0}^{\infty} \frac{(2 N-1)!}{(2 N+2 n-1)!} t^{2 n}
$$

and

$$
\begin{equation*}
\frac{d}{d t} F=-F^{2} \frac{d}{d t} \frac{1}{F} \tag{10}
\end{equation*}
$$

by (9) we have

$$
\begin{equation*}
\frac{1}{F^{2}}=\frac{1}{F^{*}}\left(\frac{1}{F}-\frac{t}{2 N} \frac{d}{d t} \frac{1}{F}\right) \tag{11}
\end{equation*}
$$

Since

$$
\frac{1}{F^{*}}=\frac{t^{2 N-1}}{(2 N-1)!\sum_{n=0}^{\infty} t^{2 N+2 n-1} /(2 N+2 n-1)!}=\sum_{n=0}^{\infty} \widehat{E}_{N-1, n} \frac{t^{n}}{n!}
$$

and

$$
\frac{1}{F}-\frac{t}{2 N} \frac{d}{d t} \frac{1}{F}=\sum_{n=0}^{\infty} E_{N, n} \frac{t^{n}}{n!}-\frac{t}{2 N} \sum_{n=1}^{\infty} E_{N, n} \frac{t^{n-1}}{(n-1)!}=\sum_{n=0}^{\infty} \frac{2 N-n}{2 N} E_{N, n} \frac{t^{n}}{n!}
$$

we have

$$
\begin{aligned}
\frac{1}{F^{*}}\left(\frac{1}{F}-\frac{t}{2 N} \frac{d}{d t} \frac{1}{F}\right) & =\left(\sum_{m=0}^{\infty} \widehat{E}_{N-1, m} \frac{t^{m}}{m!}\right)\left(\sum_{k=0}^{\infty} \frac{2 N-k}{2 N} E_{N, k} \frac{t^{k}}{k!}\right) \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} \frac{2 N-k}{2 N} E_{N, k} \widehat{E}_{N-1, n-k} \frac{t^{n}}{n!}
\end{aligned}
$$

Comparing the coefficients, we obtain a result about the sums of products.
Theorem 5. For $N \geq 1$ and $n \geq 0$,

$$
\sum_{i=0}^{n}\binom{n}{i} E_{N, i} E_{N, n-i}=\sum_{k=0}^{n}\binom{n}{k} \frac{2 N-k}{2 N} E_{N, k} \widehat{E}_{N-1, n-k}
$$

Using (10) and (11) again, we have

$$
\frac{1}{F^{3}}=\frac{1}{F^{*}}\left(\frac{1}{F^{2}}-\frac{t}{2 N} \frac{1}{F} \frac{d}{d t} \frac{1}{F}\right)=\frac{1}{F^{*}}\left(\frac{1}{F^{2}}-\frac{t}{4 N} \frac{d}{d t} \frac{1}{F^{2}}\right)
$$

Since

$$
\frac{1}{F^{2}}-\frac{t}{4 N} \frac{d}{d t} \frac{1}{F^{2}}=\sum_{n=0}^{\infty} \frac{4 N-n}{4 N} \sum_{k=0}^{n}\binom{n}{k} \frac{2 N-k}{2 N} E_{N, k} \widehat{E}_{N-1, n-k} \frac{t^{n}}{n!},
$$

we have

$$
\begin{aligned}
\frac{1}{F^{*}} & \left(\frac{1}{F^{2}}-\frac{t}{4 N} \frac{d}{d t} \frac{1}{F^{2}}\right) \\
& =\left(\sum_{i=0}^{\infty} \widehat{E}_{N-1, i} \frac{t^{i}}{i!}\right)\left(\sum_{m=0}^{\infty} \frac{4 N-m}{4 N} \sum_{k=0}^{m}\binom{m}{k} \frac{2 N-k}{2 N} E_{N, k} \widehat{E}_{N-1, m-k} \frac{t^{m}}{m!}\right) \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{k=0}^{m}\binom{n}{m}\binom{m}{k} \frac{(4 N-m)(2 N-k)}{8 N^{2}} E_{N, k} \widehat{E}_{N-1, n-m} \widehat{E}_{N-1, m-k} \frac{t^{n}}{n!},
\end{aligned}
$$

Comparing the coefficients, we get a result about the sums of products for trinomial coefficients.

Theorem 6. For $N \geq 1$ and $n \geq 0$,

$$
\begin{aligned}
\sum_{\substack{i_{1}+i_{2}+i_{3}=n \\
i_{1}, i_{2}, i_{3} \geq 0}}\binom{n}{i_{1}, i_{2}, i_{3}} & E_{N, i_{1}} E_{N, i_{2}} E_{N, i_{3}} \\
& =\sum_{m=0}^{n} \sum_{k=0}^{m}\binom{n}{m}\binom{m}{k} \frac{(4 N-m)(2 N-k)}{8 N^{2}} E_{N, k} \widehat{E}_{N-1, n-m} \widehat{E}_{N-1, m-k}
\end{aligned}
$$

6 Sums of products of complementary hypergeometric Euler numbers

Put

$$
\widehat{F}=\sum_{n=0}^{\infty} \frac{(2 N+1)!}{(2 N+2 n+1)!} t^{2 n}
$$

so that

$$
\frac{1}{\widehat{F}}=\sum_{n=0}^{\infty} \widehat{E}_{N, n} \frac{t^{n}}{n!} .
$$

Since

$$
(2 N+1) \widehat{F}+t \frac{d}{d t} \widehat{F}=(2 N+1) F,
$$

we have

$$
\begin{aligned}
\frac{1}{\widehat{F}^{2}} & =\frac{1}{F}\left(\frac{1}{\widehat{F}}-\frac{t}{2 N+1} \frac{d}{d t} \frac{1}{\widehat{F}}\right) \\
& =\left(\sum_{m=0}^{\infty} E_{N, m} \frac{t^{m}}{m!}\right)\left(\sum_{k=0}^{\infty} \frac{2 N-k+1}{2 N+1} \widehat{E}_{N, k} \frac{t^{k}}{k!}\right) \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} \frac{2 N-k+1}{2 N+1} \widehat{E}_{N, k} E_{N, n-k} \frac{t^{n}}{n!} .
\end{aligned}
$$

Hence, as an analogue of Theorem 5, we have the following.
Theorem 7. For $N \geq 1$ and $n \geq 0$,

$$
\sum_{i=0}^{n}\binom{n}{i} \widehat{E}_{N, i} \widehat{E}_{N, n-i}=\sum_{k=0}^{n}\binom{n}{k} \frac{2 N-k+1}{2 N+1} \widehat{E}_{N, k} E_{N, n-k} .
$$

We then have

$$
\frac{1}{\widehat{F}^{3}}=\frac{1}{F}\left(\frac{1}{\widehat{F}^{2}}-\frac{t}{2(2 N+1)} \frac{d}{d t} \frac{1}{\widehat{F}^{2}}\right)
$$

Since

$$
\frac{1}{\widehat{F}^{2}}-\frac{t}{2(2 N+1)} \frac{d}{d t} \frac{1}{\widehat{F}^{2}}=\sum_{n=0}^{\infty} \frac{4 N-n+2}{2(2 N+1)} \sum_{k=0}^{n}\binom{n}{k} \frac{2 N-k+1}{2 N+1} \widehat{E}_{N, k} E_{N, n-k} \frac{t^{n}}{n!},
$$

we have the following result as an analogue of Theorem 6.
Theorem 8. For $N \geq 1$ and $n \geq 0$,

$$
\begin{aligned}
& \sum_{\substack{i_{1}+i_{2}+i_{3}=n \\
i_{1}, i_{2}, i_{3} \geq 0}}\binom{n}{i_{1}, i_{2}, i_{3}} \widehat{E}_{N, i_{1}} \widehat{E}_{N, i_{2}} \widehat{E}_{N, i_{3}} \\
& \quad=\sum_{m=0}^{n} \sum_{k=0}^{m}\binom{n}{m}\binom{m}{k} \frac{(4 N-m+2)(2 N-k+1)}{2(2 N+1)^{2}} \widehat{E}_{N, k} E_{N, n-m} E_{N, m-k}
\end{aligned}
$$

One can continue to obtain the sum of four or more products, though the results seem to become more complicated.

References

[1] T. M. Apostol, On the Lerch Zeta function, Pacific J. Math. 1 (1951), 161-167.
[2] R. B. Corcino, H. Jolany, C. B. Corcino and T. Komatsu, On generalized multi polyEuler and multi Poly-Bernoulli polynomials, preprint, arXiv:1512.05293.
[3] J. W. L. Glaisher, Expressions for Laplace's coefficients, Bernoullian and Eulerian numbers etc. as determinants, Messenger of Mathematics 6 (1875), 49-63.
[4] R. Gottfert and H. Niederreiter, Hasse-Teichmüller derivatives and products of linear recurring sequences, In: Finite fields: theory, applications, and algorithms (Las Vegas, NV, 1993), 117-125, Contemp. Math., 168, Amer. Math. Soc., Providence, RI, 1994.
[5] H. Hasse, Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit Vollkommenem Konstantenkörper bei beliebiger Charakteristik, J. Reine Angew. Math. 175 (1936), 50-54.
[6] A. Hassen and H. D. Nguyen, Hypergeometric Bernoulli polynomials and Appell sequences, Int. J. Number Theory 4 (2008), 767-774.
[7] A. Hassen and H. D. Nguyen, Hypergeometric zeta functions, Int. J. Number Theory 6 (2010), 99-126.
[8] K. Kamano, Sums of products of hypergeometric Bernoulli numbers, J. Number Theory 130 (2010), 2259-2271.
[9] T. Komatsu, Hypergeometric Cauchy numbers, Int. J. Number Theory 9 (2013), 545560.
[10] T. Komatsu, Complementary Euler numbers, to appear in Period. Math. Hungar.
[11] T. Komatsu, F. Luca and C. de J. Pita Ruiz V., Generalized poly-Cauchy polynomials and their interpolating functions, Colloq. Math. 136 (2014), 13-30.
[12] T. Komatsu, J. L. Ramírez and V. Sirvent, $A(p, q)$-analogue of poly-Euler polynomials and some related polynomials, preprint, arXiv:1604.03787.
[13] S. Koumandos and H. L. Pedersen, Turán type inequalities for the partial sums of the generating functions of Bernoulli and Euler numbers, Math. Nachr. 285 (2012), 2129-2156.
[14] Y. Ohno and Y. Sasaki, On the parity of poly-Euler numbers, RIMS Kokyuroku Bessatsu B32 (2012), 271-278.
[15] Y. Ohno and Y. Sasaki, Periodicity on poly-Euler numbers and Vandiver type congruence for Euler numbers, RIMS Kokyuroku Bessatsu B44 (2013), 205-211.
[16] Y. Ohno and Y. Sasaki, Poly-Euler numbers, to appear in J. Austral. Math. Soc., DOI: 10.1007/s11139-013-9509-8.
[17] O. Teichmüller, Differentialrechung bei Charakteristik p, J. Reine Angew. Math. 175 (1936), 89-99.

