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1 Introduction

These notes are based on my talk in the 10th Fukuoka Symposium on Number Theory. See
[4] for the details of the notes.

For a positive integer M , we put

Γ0(M) :=

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod M)

}
.

We denote by Snew
k (M, ε) the orthogonal complement of the subspace of old forms of level M

in the space Sk(M, ε) of cusp forms of weight k with respect to Γ0(M) with character ε and by
Sk(M, ε)α the subspace of Sk(M, ε) spanned by the generalized eigenspaces for eigenvalues
λ of the Hecke operator Tp at p with ordp(λ) = α. Let Z[ε] be the ring generated by the
values of ε over Z. For a Z[ε]-algebra R, we put

Sk(M, ε;R)α := Sk(M, ε)α ∩ Z[ε][[q]]⊗Z[ε] R,

Snew
k (M, ε;R)α := Snew

k (M, ε) ∩ Sk(M, ε;Z[ε])α ⊗Z[ε] R.

Throughout the notes, we fix an odd prime p, a positive integer N satisfying (N, 2p) = 1
and Np ≥ 4, and α ∈ Q≥0. We assume that N is square-free for simplicity. Let f ∈
Snew
2k0+2(N,χ2)α be a primitive form with 2k0 + 1 > α ̸= (2k0 + 1)/2, f∗ ∈ S2k0+2(Np, χ2)α

its p-stabilization, and K the p-adic completion of the field obtained by adjoining
√
χ(−1),√

cχ and the values of χ to the Hecke field Qf∗ := Q({an(f∗)}n≥1), where an(f
∗) is the n-th

Fourier coefficient of f∗. Then we have a Coleman family {f∗
2k+2}k passing through f∗, where

the index k runs over all positive integers k satisfying 2k+1 > α and k ≡ k0 (mod (p−1)pmf )
for some positive integer mf and f∗

2k+2 is the p-stabilization of a primitive form f2k+2 ∈
Snew
2k+2(N,χ2;OK)α. Namely, the family satisfies f2k0+2 = f and for some positive integer

m0 and any integer r > m0,

f∗
2k+2 ≡ f∗ (mod pr−m0OK) if k ≡ k0 (mod(p− 1)pr)

(see [2] and [9]). For a non-zero integer a, we let χa denote the Kronecker symbol

χa(b) :=
(a
b

)
defined by [5, (3.1.9)]. Let D a fundamental discriminant (i.e., 1 or the discriminant of a
quadratic field over Q) with χ(−1)(−1)k0+1D > 0 and (D,Np) = 1. Then we have the D-th
Shintani lifting

θNp
k,χ,D : S2k0+2(Np, χ2) → S+

k0+2/3(4Np, χ̃),
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where the target space is the Kohnen plus space with χ̃ := χχ(−1)χ (see [3]). Let Ω−(f∗
2k+2) ∈

C×
p be the canonical period attached to f∗

2k+2 in the sense of [8], which is uniquely defined up
to a p-adic unit. Similarly to [7], by the virtue of cohomological interpretation of the D-th
Shintani lifting using the Eichler-Shimura isomorphism and the group of modular symbols
(see Section 3), we can define the algebraic D-th Shintani lifting

θNp,alg
k,χ,D (f∗

2k+2) :=
θNp
k,χ,D(f

∗
2k+2)

Ω−(f∗
2k+2)

∈ OK [[q]],

where we use our hypothesis Np ≥ 4 to ensure that Γ0(Np) is torsion-free. We will interpo-

late a family {θNp,alg
k,χ,D (f∗

2k+2)}k, p-adically. When D = 1, the interpolation has already done
by [7] for α = 0 and by [6] for any α ∈ Q≥0 with some error term that is not necessarily a
p-adic unit.

2 Main results

Theorem 1. Let the notation be the same as Section 1. Then there exists a positive integer
m0 such that for any r > m0 and an integer k > (α−1)/2 satisfying k ≡ k0 (mod (p−1)pr),
we have the following:

(i) ekθ
Np,alg
k,χ,D (f∗

2k+2) ≡ θNp,alg
k,χ,D (f∗) (mod pr−m0OK) for some ek ∈ O×

K .

(ii) We further assume that χ is the trivial character 1 and that χD(ℓ) coincides with the
eigenvalue of f for the Atkin-Lehner involution for any prime ℓ | N . Then,

ek,DL
alg∗ (k + 1, f2k+2 ⊗ χD) ≡ Lalg∗ (k0 + 1, f ⊗ χD) (mod pr−m0OK)

for some ek,D ∈ O×
K , where

Lalg∗ (k + 1, f2k+2 ⊗ χD) :=
k!L (k + 1, f2k+2 ⊗ χD)

πk+1Ω−(f∗
2k+2)

∈ OK .

Assume α = 0 for the remainder of this section.

Theorem 2. Let f ∈ Snew
2k+2(N,1)0 and g ∈ Snew

2k′+2(N,1)0 be primitive forms with k, k′ ≥ 0
and O the integer ring of the p-adic completion of the composite field of the Hecke fields
of f∗ and g∗. Assume that f∗ ≡ g∗ (mod pr0O) for some positive integer r0 and that
k ≡ k′ (mod (p − 1)pr) for a sufficiently large integer r. We further assume that χD(ℓ)
coincides with the eigenvalue of f for the Atkin-Lehner involution for any prime ℓ | N
and that the Galois representation attached to f∗ is residually irreducible. Then there exist
u ∈ O× such that we have

Lalg (k + 1, f∗ ⊗ χD) ≡ uLalg
(
k′ + 1, g∗ ⊗ χD

)
(mod pr0O),

where

Lalg (k + 1, f∗ ⊗ χD) :=
G(χD)k!L (k + 1, f∗ ⊗ χD)

(−2π
√
−1)k+1Ω−(f∗)

∈ O

with the Gauss sum G(χD) of χD.

Remark 1. When k = k′, we can take u = 1 in the theorem above by [8, Corollary 1.11].
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Assume p = 3 (and hence N ≥ 3). Then we have the following:

Theorem 3. Let E be an elliptic curve over Q of conductor N ≥ 3. Assume that E has a
rational potint of order 3 and good ordinary reduction at 3. If any prime ℓ | N at which E has
nonsplit multiplicative reduction satisfies ℓ ≡ 2 (mod 3), then, for a sufficiently large integer
r and any positive integer k ≡ 0 (mod 2 ·3r), there exists a primitive form f ∈ Snew

2k+2(N,1)0
satisfying

Mf (X) := ♯{|D| ≤ X |L(k, f ⊗ χD) ̸= 0} ≫ X,

i.e., there exists a positive constant c such that for sufficiently large X, we have Mf (X) ≥
cX.

Remark 2. Let fE be the primitive form attached to the elliptic curve E as in the theorem
above. Then MfE (X) ≫ X is due to [8, Corollary 3.5]. In addition, the elliptic curve given
by the equation y2 + y = x3 + x2 − 9x − 15 satisfies the assumption of the theorem above
(see [8, Example 3.7]).

3 Key ingredients for interpolation

For a Z[Γ0(Np)]-module M , the group of M -valued modular symbols over Γ0(Np) is defined
by

SymbΓ0(Np)(M) := HomZ[Γ0(Np)](Div0(P1(Q)),M)

For a ring R, we denote by L(2k, χ2;R) the R[Γ0(Np)]-module of homogeneous polynomials
in (X,Y ) of degree 2k with coefficients in R endowed with the χ2-twisted action, i.e., for
γ ∈ Γ0(Np) and P (X,Y ) ∈ L(2k, χ2;R),

(γP )(X,Y ) := χ2(γ)P ((X,Y )tγ),

where χ2(γ) is the value of χ2 at the lower right entry of γ. For a compact p-adic manifold
W (= Z×

p or Zp ×Z×
p ), we denote by A(W ) the space of K-valued locally analytic functions

on W and by

D(W ) := Homcont
K (A(W ),K)

the space of K-valued locally analytic distributions on W endowed with the strong topology.
For a rigid analytic variety X over K, we denote by A(X) the ring of rigid analytic functions
on X. Let W be the weight space attached to OK [[Z×

p ]]. According to [1, Theorem 3.4.3
and pp.25–26], there exists the canonical isomorphism (referred to as the p-adic Fourier
transform) of locally convex K-algebras

D(Z×
p ) := D(Z×

p ,K)
∼−→ A(W); ν 7→ ν̂,

where ν̂(k) :=
∫
Z×
p
tkdν(t) for any k ∈ W(K) and notice that W(K) is contained in A(Z×

p )

by [1, Lemma 3.2.3]. For an open affinoid subvariety Ω of W, we define kΩ ∈ W(A(Ω)) by

tkΩ := kΩ(t) := resΩ(δ̂t)

for any t ∈ Z×
p , where resΩ : A(W) → A(Ω) is the restriction homomorphism and δt ∈ D(Z×

p )
is the Dirac delta distribution at t. We denote by Aχ2 the K[Γ0(Np)]-module A(Zp × Z×

p )
endowed with χ2-twisted action; we let γ ∈ Γ0(Np) act on f ∈ Aχ2 by

(γ · f)(x, y) = χ2(γ)f((x, y)tγ).
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We set Dχ2 := Homcont
K (Aχ2 ,K) and let γ ∈ Γ0(Np) act on µ ∈ Dχ2(K) by

(µ|γ)(f) := µ(γ · f)

for f ∈ Aχ2 . We let ν ∈ D(Z×
p ) act on µ ∈ Dχ2 by

(ν · µ)(f) :=
∫
Zp

(∫
Z×
p

f(λz)dν(λ)

)
dµ(z)

for f ∈ Aχ2 . Since this action commutes with the Γ0(Np)-action, we may consider Dχ2

as a D(Z×
p )[Γ0(Np)]-module. By [1, Theorem 3.5.4], there exists a unique element k∗Ω ∈

Homcont
K-alg(D(Z×

p ), A(Ω)) such that k∗Ω(δt) = tkΩ . We define the A(Ω)[Γ0(Np)]-module

DΩ,ε := Dχ2⊗̂D(Z×
p )A(Ω)

as the complete tensor product with respect to k∗Ω.

Lemma 4 ([1]). Let h ∈ Q≥0. For any κ ∈ W(K), there exists an open K-affinoid subvari-
ety Ω in W containing κ such that an A(Ω)-module SymbΓ0(Np)(DΩ,χ2)± admits a slope ≤ h
decomposition with respect to the Hecke operator Tp. Moreover, for any integer k > (h−1)/2,
we have the following control theorem:

SymbΓ0(Np)(DΩ,χ2)±≤h ⊗A(Ω) A(Ω)/P2k
∼−→ SymbΓ0(Np)(L(2k, χ

2;K))±≤h,

where the subscript ≤ h means the Tp-slope ≤ h-part (see [1, Definitions 4.6.1 and 4.6.3] for
the definition of slope ≤ h decomposition).

Similarly to [7], we have a cohomological interpretation ofD-th Shintani lifting as follows:

H1
c (Γ0(Np), L(2k, χ2;C))− ∼

Ash-Stevens
// SymbΓ0(Np)(L(2k, χ

2;C))−
ΘNp

k,χ,D // C[[q]]

H1
p (Γ0(Np), L(2k, χ2;C))−

?�

Manin-Drinfeld

OO

S2k+2(Np, χ2)
Eichler-Shimura

∼oo
θNp
k,χ,D // S+

k+3/2(4Np, χ̃),
?�

q-expansion

OO

where the superscript − is the (−1)-eigenspace for some involution and all arrows are Hecke
equivariant. From this point of view, it suffices to interpolate ΘNp

k,χ,D, i.e., construct a Hecke

equivariant morphism SymbΓ0(Np)(DΩ,χ2)±≤h → A(Ω)[[q]] such that the following diagram
commutes:

SymbΓ0(Np)(DΩ,χ2)−≤h

����

// A(Ω)[[q]]

����
SymbΓ0(Np)(L(2k, χ

2;K))−≤h

ΘNp
k,χ,D // K[[q]]

with varying k, where the left vertical arrow is the specialization obtained by the lemma
above and the right vertical arrow is modulo Pk. In fact, we make such a diagram of
semi-simple and integral part.
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4 Outline of the proof of Theorem 1

We denote by K⟨X⟩ the ring of restricted power series over K and by BK [a, r] the affinoid
disk of radius r about a (see [2]). Let

σ : K ⟨(X − 2k0)/p
m0⟩ ∼−→ K ⟨(X − (2k0 + 2)) /pm0⟩ ; X 7→ X − 2

be an isometric K-algebra isomorphism with respect to the supremum semi-norm and

aσ : B := BK [2k0 + 2, p−m0 ]
∼−→ BK [2k, p−m0 ] =: Bσ; m 7→ σ−1(m)

the corresponding isomorphism of K-affinoid varieties. Via σ, the specialization at 2k on
Bσ corresponds to the specialization at 2k + 2 on B. We apply Lemma 4 to h := α and
Ω := Bσ. Roughly speaking, we can make a Hecke equivariant isomorphism between a
subspace of overconvergent families over B and a subspace of SymbΓ0(Np)(DΩ,χ2)−≤α, which
interpolates an isomorphism between their specialized spaces by shrinking B about the
center if necessary. Consequently, we see that there exists Φ ∈ SymbΓ0(Np)(DBσ ,χ2)±≤α

such that for any integer k > (α − 1)/2 with k ≡ k0 (mod(p − 1)pm0), the image of Φ
under the specialization at 2k coincides with ekΩ

−(f∗
2k+2)

−1Φf∗
2k+2

for some ek ∈ O×
K , where

Φf∗
2k+2

∈ SymbΓ0(Np)(L(2k, χ
2;C))− is the modular symbol attached to f∗

2k+2. Similarly

to [7], we can construct Θ(Φ) ∈ A(Bσ)[[q]] such that for any integer k > (α − 1)/2 with
k ≡ k0 (mod(p − 1)pm0), the image of Θ(Φ) under the specialization at 2k coincides with

ekθ
Np,alg
k,χ,D (f∗

2k+2). Since we can check that the |D|-th Fourier coefficient of θNp
k,χ,D(f

∗
2k+2)

equals the central L-value of f2k+2 ⊗χD with explicit multiples, the second assertion of the
theorem follows.
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