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Abstract

We discuss the Iwasawa Main conjecture for semistable abelian varieties over non-
commutative unramified extensions of a global field of positive characteristic.

1 Preliminaries

The non-commutative Iwasawa theory was introduced by Coates, Fukaya, Kato, Sujatha
and Venjakob in [8] for number fields. Here we study the function field analogue of their
theory. In this section we shall, for the reader’s convenience, recall some basic background
material relating to relative algebraic K-theory, refined Euler characteristics, the Iwasawa
algebras of certain kinds of non-commutative p-adic Lie groups and relevant aspects of the
theory of pro-coverings.

1.1 Relative algebraic K-theory and Iwasawa algebras

1.1.1

Throughout this article, modules are always to be understood, unless explicitly stated oth-
erwise, as left modules.

For any associative, unital, left noetherian ring R we write D(R) for the derived category
of R-modules. We also write D−(R), D+(R) and Dp(R) for the full triangulated subcat-
egories of D(R) comprising complexes that are isomorphic to an object of the categories
C−(R), C+(R) and Cp(R) of bounded above complexes of projective R-modules, bounded
below complexes of injective R-modules and bounded complexes of finitely generated pro-
jective R-modules.

For any homomorphism R → R′ of rings as above we write K0(R,R
′) for the relative

algebraic K0-group that is defined in terms of explicit generators and relations by Swan in
[18, p. 215]. We recall in particular that this group fits into a canonical exact sequence of
abelian groups of the form

K1(R)→ K1(R
′)

∂R,R′
−−−→ K0(R,R

′)→ K0(R)→ K0(R
′). (1)

Here, for any ringA, we writeK1(A) for its Whitehead group andK0(A) for the Grothendieck
group of the category of finitely generated projective A-modules, and the first and last arrows
in (1) denote the homomorphisms that are naturally induced by the given ring homomor-
phism R→ R′. (For more details about this sequence, and a proof of its exactness, see [18,
Chap. 15]).

It is well known that for any object C• of Dp(R) one can define a canonical Euler
characteristic χR(C

•) in the group K0(R). We recall further that for any such complex C•

and any (bounded) exact sequence of R′-modules of the form

ϵ : 0→ · · · → R′ ⊗R H
i(C•)→ R′ ⊗R H

i+1(C•)→ R′ ⊗R H
i+2(C•)→ · · · → 0,
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one can define a canonical pre-image χref
R,R′(C•, ϵ) of χR(C

•) under the connecting homo-
morphism K0(R,R

′) → K0(R) that occurs in the sequence (1). (For more details of this
natural ‘refined Euler characteristic’ construction see either [6] or [5]).

In particular, if C• belongs to Dp(R) and the complex R′⊗L
RC

• is acyclic, then we shall
set

χref
R,R′(C•) := χref

R,R′(C•, ϵR′)

where ϵR′ denotes the exact sequence of zero R′-modules.
In the case that R′ is the total quotient ring of R, then we often abbreviate the con-

necting homomorphism ∂R,R′ in the exact sequence (1) to ∂R and the Euler characteristics
χref
R,R′(−,−) and χref

R,R′(−) to χref
R (−,−) and χref

R (−) respectively. In those cases that R
and R′ are both clear from context we also sometimes abbreviate the notation ∂R,R′ and
χref
R,R′(−,−) to ∂ and χref(−,−) respectively.

1.1.2

For any profinite group G and any finite extension O of Zℓ (for any prime ℓ) we write
ΛO(G) for the O-Iwasawa algebra lim←−U

O[G/U ] of G, where U runs over the set of open
normal subgroups of G (partially ordered by inclusion) and the limit is taken with respect
to the obvious transition homomorphisms. We also write QO(G) for the total quotient ring
of ΛO(G), and if O = Zp, then we omit the subscripts ‘O’ from both ΛO(G) and QO(G).

Motivated by the approach of Coates, Fukaya, Kato, Sujatha and Venjakob in [8], we
now assume that G lies in a group extension of the form

{1} → H → G
πG−−→ Γ→ {1} (2)

in which Γ is (topologically) isomorphic to the additive group of p-adic integers Zp. We also
fix an algebraic closure Qc

p of Qp and write O for the valuation ring of a finite extension of
Qp in Qc

p.
We write S for the subset of ΛO(G) comprising elements f for which the quotient

ΛO(G)/ΛO(G)f is finitely generated as a module over the ring ΛO(H) and we also set
S∗ :=

∪
i≥0 p

−iS.
We recall that in [8, §2] it is shown that S and S∗ are both multiplicatively closed

left and right Ore sets of non-zero divisors and so we can write ΛO(G)S and ΛO(G)S∗ =
ΛO(G)S [

1
p ] for the corresponding localisations of ΛO(G) (we however caution the reader that

this notation does not explicitly indicate that S and S∗ depend upon both O and the chosen
extension (2)).

We often use the fact that the long exact sequence (1) is compatible with the formulation
of scalar extensions in the sense that there exists a commutative diagram

K1(ΛO(G)) −−−−→ K1(ΛO(G)S∗)
∂O,G,S∗
−−−−−→ K0(ΛO(G),ΛO(G)S∗)∥∥∥ x x

K1(ΛO(G))
αO,G−−−−→ K1(ΛO(G)S)

∂O,G,S−−−−→ K0(ΛO(G),ΛO(G)S)

(3)

in which we set ∂O,G,Σ := ∂ΛO(G),ΛO(G)Σ for both Σ = S and Σ = S∗.

1.1.3

If Σ denotes either of the Ore sets S or S∗ defined above, then we shall write Dp
Σ(ΛO(G))

for the full triangulated subcategory of Dp(ΛO(G)) comprising those (perfect) complexes
C• for which ΛO(G)Σ ⊗ΛO(G) C

• is acyclic.
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We note, in particular, that any object C• of Dp
Σ(ΛO(G)) gives rise to an Euler charac-

teristic element
χref(C•) := χref

ΛO(G),ΛO(G)Σ
(C•, ϵΛO(G)Σ)

in K0(ΛO(G),ΛO(G)Σ) that depends only upon C•.
We recall that if G has no element of order p, and Σ denotes either S or S∗, then

the group K0(ΛO(G),ΛO(G)Σ) is naturally isomorphic to the Grothendieck group of the
category of finitely generated ΛO(G)-modules M with the property that ΛO(G)Σ⊗ΛO(G)M
vanishes (for an explicit description of this isomorphism see, for example, [7, §1.2]).

In particular, if G is also abelian then the determinant functor induces a natural iso-
morphism between K0(ΛO(G),ΛO(G)Σ) and the multiplicative group of invertible ΛO(G)-
lattices in ΛO(G)Σ. For any (finitely generated torsion) ΛO(G)-module M as above, this
isomorphism sends the element χref(M [0]) defined above to the (classical) characteristic
ideal chΛO(G)(M) of M .

In the sequel we will often abbreviate the Euler characteristic χref
ΛO(G),QO(G)(−,−) to

χref
O,G(−,−).

1.1.4

We now fix a topological generator γ of the group Γ that occurs in the extension (2) and
also an Ore set Σ ∈ {S, S∗}.

Then for the valuation ring O′ of any finite extension of Qp in Qc
p which contains O, and

any continuous homomorphism of the form

ρ : G→ GLn(O′) (4)

there is an induced ring homomorphism

ΛO(G)Σ → Mn(O′)⊗O′ QO′(Γ) ∼= Mn(QO′(Γ))

that sends every element g of G to ρ(g)⊗ πG(g). This ring homomorphism in turn induces
a homomorphism of abelian groups

ΦO,G,Σ,ρ : K1(ΛO(G)Σ)→ K1(Mn(QO′(Γ))) ∼= K1(QO′(Γ)) ∼= QO′(Γ)× ∼= Q(O′[[u]])× (5)

where we write O′[[u]] for the ring of power series over O′ in the formal variable u, the first
isomorphism is induced by Morita equivalence, the second by taking determinants (over the
ring QO′(Γ)) and the last by sending γ− 1 to u. In the sequel we shall often not distinguish
between the homomorphisms ΦO,G,S,ρ and ΦO,G,S∗,ρ and also abbreviate ΦO,G,Σ,ρ to ΦG,ρ if
we feel that O and Σ are both clear from context.

For any element ξ of the Whitehead group K1(ΛO(G)Σ) and any representation ρ as in
(4), one then defines the ‘value’ ξ(ρ), resp. the ‘leading term’ ξ∗(ρ), of ξ at ρ to be the
value, resp. the leading term, at u = 0 of the series ΦO,G,Σ,ρ(ξ). In particular, one has
ξ∗(ρ) ∈ Qc

p \ {0} for all ρ and one regards the value ξ(ρ) to be equal to ‘∞’ if the algebraic
order of ΦO,G,Σ,ρ(ξ) at u = 0 is strictly negative.

We recall finally that a continuous representation ρ as in (4) (with O = Zp) is said to
be an ‘Artin representation’ if its image ρ(G) is finite.

1.2 Pro-coverings

We quickly review some standard material concerning pro-coverings.
For any prime power n we write Fn for the finite field of cardinality n. We also now fix

a prime p and a strictly positive integral power q of p.
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1.2.1

Let X be a connected scheme over Fq and write FEt/X for the category of X-schemes that
are finite and étale over X.

Then for any geometric point x of X the functor that takes each scheme Y to the set
Fx(Y ) := HomX(x, Y ) of geometric points of Y that lie over x gives an equivalence of
categories between projective systems in FEt/X and the category of projective systems of
finite sets upon which the group π1(X,x) acts continuously (on the left).

In particular, for any continuous quotient G of π1(X,x) there exists a corresponding
pro-covering of X of group G which we denote by (f : Y → X,G), or more simply by
f : Y → X.

1.2.2

As above, we fix an integral power q of a given prime number p. In addition, we now fix a
separated variety X that is of finite type over Fq and a geometric point x of X. We also fix
a separable closure Fc

q of Fq.
We then consider compact p-adic Lie groups G which lie in a commutative diagram of

continuous homomorphisms of the form

π1(X,x)
πX,x //

π′
G ## ##GGGGGGGGG

πp1(Fq,Fc
q)

G

πG

::uuuuuuuuu

(6)

where πX,x is the canonical homomorphism to the maximal pro-p quotient πp1(Fq,Fc
q) of

π1(Fq,Fc
q) and π

′
G is surjective.

The composite homomorphism

π1(Fq,Fc
q)→ Gal(Fc

q/Fq)→ Zp,

where the first map is the canonical isomorphism and the second sends the Frobenius auto-
morphism z 7→ zq in Gal(Fc

q/Fq) to 1, induces an identification of im(πX,x) = im(πG) with
a subgroup of Zp of finite index, dX say. This identification in turn gives rise to a canonical
group extension

{1} → ker(πG)→ G
πG−−→ im(πG)→ {1}

of the form (2).
In the rest of this paper, we shall set

H := ker(πG) and Γ := im(πX,x) = im(πG)

and write γ for the topological generator of Γ that is given by the dX -th power of the image
of the Frobenius automorphism z 7→ zq under the natural projection map Gal(Fc

q/Fq) ∼=
π1(Fq,Fc

q)→ πp1(Fq,Fc
q).

2 Semistable abelian varieties over unramified extensions

There is an extensive existing literature concerning the Iwasawa theory of abelian varieties
over compact ℓ-adic Lie extensions of global function fields of characteristic p, with p ̸= ℓ.
In this regard we mention, in particular, the interesting work of Ellenberg [9], Sechi [17],
Bandini and Longhi [1] and Pacheco [16].
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In the next sections, however, we shall focus on results that concern the Iwasawa theory of
abelian varieties over compact p-adic Lie extensions of such function fields (of characteristic
p).

In this first section we state (in Theorem 2.1) a result that was recently proved by
Vauclair and the present author in [20] and concerns the Selmer modules of semistable
abelian varieties over certain unramified compact p-adic Lie-extensions.

2.1 Hypotheses and notations

We assume to be given a global function field K of characteristic p and field of constants
Fq. We then write Kar for the constant Zp-extension of K.

We also fix an abelian variety A over K that has semistable reduction and write Z for
the set of places at which A has bad reduction. We write C for the proper smooth curve
over Fq which has field of functions K and A for the Néron model over C of A over K.
We denote by Dlog(A) the Dieudonné crystal defined by Kato and the author [12] on the
log-scheme C# which has underlying scheme C and log-structure defined by the smooth
divisor Z.

We recall that the p-Selmer group of A over any algebraic field extension F of K is
defined to be

Selp∞(A/F ) := ker
(
H1

fl(F,Ap∞)−→
∏
v

H1
fl(Fv, A)

)
,

where Ap∞ is the p-divisible group associated to A, H1
fl(−,−) denotes flat cohomology and

in the product v runs over all places of F .
In the sequel we shall study the Pontrjagin dual

Xp(A/F ) := HomZp(Selp∞(A/F ),Qp/Zp)

of Selp∞(A/F ). If F/K is Galois, then we endow Xp(A/F ) with the natural contragredient
action of Gal(F/K).

In the rest of this section we always assume that A satisfies the following hypothesis
which, for convenience, we refer to as ‘µA ∼ 0’

• A is isogeneous to an abelian variety A′ such that Xp(A
′/Kar) has trivial µ-invariant

as a Λ(Γ)-module.

We fix a compact p-adic Lie extension K∞ of K that is unramified everywhere and
contains Kar and then set G := Gal(K∞/K). This gives a canonical group extension

{1} → Gal(K∞/Kar)→ G
πG−−→ Gal(Kar/K)→ {1}

of the form (2) in which πG is the natural restriction map.
In the sequel we therefore set

H := Gal(K∞/Kar) and Γ := Gal(Kar/K)

and use the canonical Ore sets S and S∗ in Λ(G) that are discussed in §1.1.2 (with respect
to this choice of data).

The extension K∞/K corresponds to a pro-étale covering C∞ → C (in the sense of
§1.2). For convenience we also fix a cofinal system Gn of finite quotients of G, identify G
with the inverse limit lim←−n

Gn and for each n write Cn → C for the finite layer of C∞ that
corresponds to the group Gn.
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2.2 Statement of the main results

In this section we write Γ(−,−) for the global section functor for the flat (rather than étale)
topology.

2.2.1

In [20] the authors first define a canonical element of the relative algebraic K0-group
K0(Λ(G),Λ(G)S∗) that plays the role of a (non-commutative) characteristic ideal in the
formulation of the main conjecture.

To do this they define complexes of Λ(G)-modules by setting

- N∞ = N∞,C,Z := R lim←−n,k
RΓZ(Cn,Apk), where ΓZ is the functor of global sections

(for the flat topology) that vanish at Z;

- L∞ := R lim←−n
RΓ(Cn,Lie(A)(−Z)).

Under the hypothesis that µA ∼ 0, it can then be shown that these complexes belong to
the category Dp

S∗(Λ(G)) that was introduced in §1.1.3 (see, for example, Proposition 3.9).
One thereby obtains a well-defined element of K0(Λ(G),Λ(G)S∗) by setting

χ(A/K∞) := χref(N∞) + χref(L∞),

where χref(−) is the Euler characteristic that was discussed in §1.1.3.

2.2.2

The authors of [20] then associate a canonical p-adic L-function to the arithmetic of A over
K.

To recall their construction we write Dlog,0 for the crystalline sheaf that is obtained as
the kernel of the canonical map Dlog(A)→ Lie(A) that is constructed in [12] and note that
one obtains well-defined objects of Dp(Λ(G)) by setting

- P∞ := R lim←−n
RΓ(C#

n /Zp, D
log(A)(−Z)),

- I∞ := R lim←−n
RΓ(C#

n /Zp, D
log,0(A)(−Z)).

For convenience, for each Y in {I, L,N, P} we denote by Y0 and Yar the complex Y∞
when K∞ = K and K∞ = Kar respectively.

Now, under the stated hypotheses on A, there are morphisms in Dp(Λ(G))

1 : I∞ → P∞,

φ : I∞ → P∞

which have the following property: after inverting p, the map 1 coincides with the identity
on I0[1/p] = P0[1/p] and the map φ coincides with p−1 times the endomorphism on P0[1/p]
that is induced by the Frobenius operator of Dlog(A).

Next write S∞ = S∞,C# for a complex that lies in an exact triangle in Dp(Λ(G)) of the
form

S∞ → I∞
1−φ→ P∞ → S∞[1]

and then define the complexes S0 and Sar in just the same way as above. We recall in
particular that the complex S0 was first defined in [12] where it was referred to as the
‘syntomic complex’ of A over K.
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It is clear that the scalar extension 1S∗ of the morphism 1 is an isomorphism inDp(Λ(G)S∗)
and this is in fact also true of the morphism 1 − φ (see Corollary 3.12). Given this obser-
vation, the article [20] defines a p-adic L function for A over K∞ by setting

LA/K∞ := DetΛ(G)S∗ ((1− φ)S∗ ◦ (1S∗)−1),

where DetΛ(G)S∗ is the universal determinant functor of [13] (see also [11]) which, in par-
ticular, induces a multiplicative map from the set of automorphisms of Dp(Λ(G)S∗) to the
Whitehead group K1(Λ(G)S∗).

2.2.3

We can now collect together the main results of [20] in the statement of the following result.
This result verifies a natural analogue for the abelian variety A and the compact p-adic

Lie extension K∞ of K of the main conjecture formulated by Coates et al in [8].

Theorem 2.1. Fix a semistable abelian variety A over K and an unramified p-adic Lie
extension K∞ of K as above.

(i) Then for every Artin representation ρ of G whose image has coefficients in a finite
totally ramified extension of Qp, one has

ρ(LA/K∞) = LZ(A, ρ, 1),

where the value of LA/K∞ at ρ is as defined in §1.1.4.
(ii) In K0(Λ(G),Λ(G)S∗) one has an equality

∂G,S∗(LA/K∞) = χ(A/K∞).

For a brief discussion of the key ideas which underlie the proof of the interpolation
formula given in Theorem 2.1(i) see §3.5. The proof of Theorem 2.1(ii) relies, on the other
hand, mainly on the existence of certain natural exact triangles in Dp(Λ(G)) of the form

I∞
1−→ P∞ → L∞ → I∞[1] (7)

and
N∞ → I∞

1−φ−−−→ P∞ → N∞[1]. (8)

In fact, whilst the existence of the triangle (7) follows essentially directly from the
definitions of the complexes I∞, P∞ and L∞, the existence of (8) is equivalent to the existence
of an isomorphism in Dp(Λ(G)) between S∞ and N∞ and proving that such an isomorphism
exists is a difficult task. It was first proved by Kato and the author in [12] when G is the
trivial group. However, constructing such an isomorphism more generally requires a close
re-examination of the constructions made in Chapters 4 and 5 of [12] in order to extend
them into the necessary Iwasawa-theoretic setting, and much of [20] is taken up with this
rather detailed work.

3 The Proof of Theorem 2.1

In this section we explain in greater detail some of the key steps that are involved in the
proof of Theorem 2.1.

As in §2.2, we shall continue to write Γ(−,−) for the global section functor for the flat
topology.
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3.1 The complexes N0 and S0

In both this subsection and in §3.2, we shall discuss the construction of an isomorphism in
D(Λ(G)) between the complexes S∞ and N∞ (or equivalently, of an exact triangle of the
form (8)).

We start by explaining how to show that the complexes N0 and S0 are isomorphic by
means of a careful dévissage argument.

3.1.1

We first discuss the appropriate dévissage for N0.
At each place v in Z at which A has semistable reduction we use the natural ‘Raynaud

extensions’

0 −→ Tv −→ Gv −→ Bv −→ 0,

0 −→ T ∗
v −→ G∗

v −→ B∗
v −→ 0.

Here Tv and T ∗
v are tori and Bv and B∗

v are abelian varieties over the ring of integers Ov of
the completion Kv of K at v. At each such v we also write Γv for the Cartier dual of T ∗

v .

Theorem 3.1. There exists a natural exact triangle in D+(Zp) of the form

N0,C,Z → N0,U,∅ ⊕
∏
v∈Z

N0,Ov,k(v) → N0,Kv ,∅ → N0,C,Z [1].

For each place v in Z there is also a natural isomorphism

N0,Ov ,k(v) ≃ R lim←−
k

RΓk(v)(Ov, Gv,pk)

and an exact triangle in D+(Zp)

N0,Ov ,k(v) → R lim←−
k

RΓ(Ov,Av,pk)→ R lim←−
k

RΓ(k(v), Ak(v),pk)→ N0,Ov,k(v)[1].

Note that, modulo proving the acyclicity of RΓk(v)(Ov,Γv ⊗Qp/Zp), the main point of
the proof of Theorem 3.1 is the construction of a natural Mayer-Vietoris triangle.

3.1.2

We next discuss the dévissage that is necessary to deal with S0.
Let H be a p-divisible group on X ∈ {C,Ov} that is endowed with the log structure

induced by either T = Z or T = k(v) or even the trivial log-structure. We then write
S0,X#,H for a complex that is defined by means of an exact triangle in D+(Zp) of the form

S0,X#,H → RΓ(X#/Zp, D
log,0(H)(−T )) 1−φ−−−→ RΓ(X#/Zp, D

log(H)(−T ))→ S0,X#,H [1],

where Dlog(H) denotes the inverse image of the crystalline Dieudonné crystal of H/X under
the natural morphism of topoi (X#/Zp)Crys → (X/Zp)Crys.

Theorem 3.2. There exists a natural exact triangle in D+(Zp)

S0,C# → S0,U ⊕
∏
v∈Z

S
0,O#

v
→

∏
v∈Z

S0,Kv → S0,C# [1].
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For each place v in Z there are also exact triangles in D+(Zp)

S
0,O#

v
→ S

0,O#
v ,Γv,p∞

→ S
0,O#

v ,Gv,p∞
[1]→ S0,C# [1]

and for H ∈ {Γv,p∞ , Gv,p∞} also

S
0,O#

v ,H
→ S0,Ov ,H → S0,k(v),H̄ → S

0,O#
v ,H

[1],

where H̄ denotes the reduction of H modulo p.

The proof of this result relies on the construction of the Dieudonné crystal Dlog(A),
an explicit computation on de Rham complexes and a natural adaptation of the Hyodo-
Kato construction to the setting of the diagram of schemes that underlies the associated
Mayer-Vietoris triangle.

3.1.3

We can now deduce the existence of the required isomorphism between the complexes N0

and S0.

Theorem 3.3. The complexes N0 and S0 are isomorphic.

Proof. After taking account of the results of Theorems 3.1 and 3.2 this is reduced to proving
all of the following claims:

• S
0,O#

v ,Γv,p∞
is acyclic;

• S
0,O#

v ,Gv,p∞
is naturally isomorphic to the complex ker(A(Ov)→ A(k(v)))[1];

• If H is a p-divisible group on a scheme X having finite p-bases, then S0,X,H is naturally
isomorphic to R lim←−k

RΓ(X,Hpk).

The first two claims here are verified by means of an explicit computation of the syntomic
complexes. The final claim is proved by applying the syntomic topology (as in [10] and [4])
to each of the p-divisible groups Gv,p∞/Ov, Gv,p∞/k(v), Av,p∞/Kv and AU,p∞/U .

Remark 3.4. There is a rather delicate technical difficulty that we have, for simplicity,
ignored in the above reasoning: the mapping cone construction is not functorial in the
derived category. To overcome this difficulty the authors of [20] are forced to work with an
appropriate derived category of diagrams.

3.2 Extending to the complexes S∞ and N∞.

It is shown in [20] that the constructions described above are functorial both in the category
of semistable abelian varieties as well as with respect to étale base change. This fact then
allows the authors to construct objects N and S in D+(Cét) that are respectively associated
to the cohomology theory of N and S.

For example, the complex N is defined to be R lim←−k
RϵZ∗Apk where the functor ϵZ :

CFL → Cét is defined as ϵZ(F ) := ker(ϵ∗F → ϵ∗i∗i
∗F ) with i the closed immersion Z ⊂ C

and ϵ is the natural morphism CFL → Cét of change of topologies.
Having constructed N and S in this way, the authors of loc. cit. are then able to prove

the following result.
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Theorem 3.5. There exists an isomorphism in D+(Cét) of the form

N ≃ S

which induces, upon applying the global section functor over C, the isomorphism

N0 ≃ S0

that is constructed in Theorem 3.3.

Deducing the existence of an isomorphism of complexes N∞ ∼= S∞ from the above
isomorphism N ≃ S is now a rather formal process involving the theory of normic systems.

Recall that a ‘normic system’ for the group G is a collection (Mn), with each Mn a
Zp[Gn]-module, together with transition maps Mn → Mn+1 and Mn+1 → Mn that satisfy
certain natural compatibilities. In particular, one can define a ‘normic section functor’ from
the derived category of étale sheaves of Zp-modules on C to the category of normic systems
for G by associating to each abelian sheaf F of Zp-modules on the small étale site of C
the collection (F (Cn)) together with its natural restriction and corestriction maps (in this
regard note that Cn is an étale C-scheme because the extension Kn/K is unramified and
that the action of Gn on Cn endows F (Cn) with a natural structure as Zp[Gn]-module).

For the present purposes it is actually sufficient to consider the projective system of
Λ(G)-modules that underlies this normic system and in this way one constructs a well-
defined exact functor

D+(Cét)→ D+(CNΛ(G))→ D+(Λ(G))

where D+(CNΛ(G)) denotes the derived category of projective systems of Λ(G)-modules and
the second arrow is the natural ‘passage to inverse limit’ functor.

The required isomorphism N∞ ∼= S∞ is then obtained by applying this functor to the
isomorphism N ≃ S in Theorem 3.5.

3.3 The complex Nar

We now write k∞ for the Zp-extension
∪

n≥0 kn of Fq (and note that Kar = Kk∞).

Proposition 3.6. (i) For any complex Y ∈ {I, P, L}, there is a canonical isomorphism in
D(Λ(Γ)) of the form W (k∞)⊗L

Zp
Y0 ≃ Yar.

(ii) The induced morphism 1− φ : Iar → Par is W (k∞)− σ-linear.

Proof. Claim (i) results from the base change theorem for log crystalline cohomology and
claim (ii) is straightforward to verify.

We recall that Q(Γ) denotes the total quotient ring of Λ(Γ).

Corollary 3.7. The complex Q(Γ)⊗L
Λ(Γ) Nar is acyclic.

Proof. The result of Proposition 3.6(i) combines with the exact triangle (8) to imply that
it is enough to prove that the morphism Q(Γ) ⊗L

Λ(Γ) Iar → Q(Γ) ⊗L
Λ(Γ) Par in Dp(Q(Γ))

that is induced by 1 − φ is an isomorphism. Further, since Lie(D) is a finite dimensional
Fp-vector space, 1 gives an isomorphism Qp ⊗L

Zp
Iar → Qp ⊗L

Zp
Par. The required result can

thus be proved by using the fact that crystalline cohomology over a proper log-smooth base
is finite dimensional and applying the following easy fact from σ-linear algebra: if ψ is a
linear endomorphism of a finite dimensional Qp-vector space M then any map of the form
id − σ ⊗ ψ on W (k∞) ⊗Zp M is surjective and has kernel a finite dimensional Qp-vector
space.
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The connection between Nar and the arithmetic invariants of the abelian variety A is
described in the next result.

Proposition 3.8. (i) The complex Nar is concentrated in degrees 1, 2 and 3. There is also
a canonical exact sequence

0→ H1(Nar)→ lim←−
k,n

Selpk(A/Kkn)→ lim←−
k,n

∏
v∈Z
A(k(v)kn)/pk → 0

and canonical isomorphisms H2(Nar) ≃ Xp(A
t/Kar) and H

3(Nar) ≃ At
p∞(Kar).

(ii) The following conditions are equivalent:

(a) The complex Nar belongs to Dp(Zp).

(b) The module Xp(A
t/Kar) is finitely generated over Zp.

(c) The module Xp(A/Kar) is finitely generated over Zp.

Proof. Claim (i) is proved by an explicit computation using the definition of Nar. Claim
(ii) then follows easily from the descriptions in claim (i) and the natural isogeny between A
and At.

3.4 The complex N∞

Proposition 3.9. (i) The descriptions of Proposition 3.8(i) remain valid if one replaces
the complex Nar by N∞.

(ii) Under the hypothesis µA ∼ 0 the complex N∞ belongs to Dp
S∗(Λ(G)).

Proof. For each natural numberm we choose a finite extensionK ′
m ofK insideK∞ such that

K∞ =
∪

m,iK
′
mki. Then, since each of the modules Hq(NK′

mki) is compact, the projective
system Hq(NK′

mki) is lim←−-acyclic and so there are natural isomorphisms

Hq(N∞) ∼= lim←−
m,i

Hq(NK′
mki)

∼= lim←−
m

Hq(NK′
mk∞).

The descriptions in claim (i) can therefore be obtained by passing to the inverse limit over
m of the descriptions in Proposition 3.8(i) with Nar replaced by NK′

mk∞ = NK′
m,ar

Next we combine the hypothesis µA ∼ 0 with the result of Proposition 3.8(ii) to deduce
that the complex Λ(Γ)⊗L

Λ(G) N∞ ≃ Nar belongs to D
p(Zp).

Claim (ii) therefore follows from the easy algebraic fact that any complexM inDp(Λ(G))
belongs to Dp

S(Λ(G)), and hence also to Dp
S∗(Λ(G)), if the complex Λ(Γ)⊗L

Λ(G) M belongs

to Dp(Zp).

Remark 3.10. Propositions 3.8(ii) and 3.9(ii) combine to imply that the moduleXp(A/K∞)
is Λ(G)-torsion. We are aware of two situations in which this observation has been either
strengthened or generalised.

(i) Let L be any Zp-power extension of K that is unramified outside a finite set Σ of
places of K at each of which A has ordinary reduction, and set G := Gal(L/K). Then in
this case Tan [19] has proved the following strengthening of Proposition 3.9(ii):

• Xp(A/L) is finitely generated as a Λ(G)-module if and only if the group H1(Gv, A(L))
is cofinitely generated as a Zp-module for all v in Σ, where Gv denotes the decompo-
sition group of G at v.
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• If Xp(A/L) is finitely generated as a Λ(G)-module and Kar ⊆ L, then Xp(A/L) is a
torsion Λ(G)-module.

• If Xp(A/L) is a torsion Λ(G)-module, then there exists a finite set T of proper inter-
mediate Zp-power extensions of L/K with the following property: for each Zp-power
extension M of K inside L the Λ(Gal(M/K))-module Xp(A/M) is torsion unless M
is a subfield of some field in T .

(ii) Let now L be any compact p-adic Lie extension ofK which containsKar, is unramified
outside a finite set of places Σ and is such that G := Gal(L/K) contains no element of
order p. Then in [15] Ochiai and the author prove that Xp(A/L) is a finitely generated
Λ(Gal(L/Kar))-module for any abelian variety A overK which satisfies both of the following
conditions:

• A has good reduction at all places outside Σ and ordinary reduction at all places in
Σ;

• The (classical) µ-invariant of the module Xp(A/Kar) vanishes.

Note also that this latter µ-invariant always vanishes if A is constant ordinary.
Finally we note that the recent preprint [3] of Bandini and Valentino uses a natural

generalisation of Mazur’s Control Theorem to prove similar results concerning the structure
of the module Xp(A/L).

Remark 3.11. If one does not assume that L containsKar, then the Λ(G)-module Xp(A/L)
need not be torsion. For an explicit example (taken from the Appendix of [14]), fix a
quadratic extension K/k and a non-isotrivial semistable elliptic curve A over k that has
analytic rank zero and split multiplicative reduction at a given place v0. Then Xp(A/L)
fails to be a torsion Λ(Gal(L/K))-module whenever L is a Zp-extension of K that is dihedral
over k, totally ramified above v0 and unramified at all other places.

3.5 The Main Conjecture for A over K∞

We first record an easy consequence of Proposition 3.9.

Corollary 3.12. Under the hypothesis that µA ∼ 0, the morphisms in Dp(Λ(G)S∗)

1S∗ : (I∞)S∗ → (P∞)S∗ and (1− φ)S∗ : (I∞)S∗ → (P∞)S∗

that are induced by the respective scalar extensions of 1 and 1− φ are isomorphisms.

Proof. For the morphism 1S∗ this claim follows directly from the scalar extension of the
triangle (7) and the fact that L∞ is annihilated by p. For the morphism (1−φ)S∗ , the claim
is a direct consequence of Proposition 3.9(ii) and scalar extension of the triangle (8).

This result leads naturally to the definition of the “p-adic L-function” which occurs in
the statement of Theorem 2.1.

Definition 3.13. Under the hypothesis µA ∼ 0, the p-adic L-function LA/K∞ for A over
K∞ is the element of K1(Λ(G)S∗) that is defined by setting

LA/K∞ := DetΛ(G)S∗ ((1− φ)S∗ ◦ (1S∗)−1).
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Given this definition of the p-adic L-function, the interpolation property stated in Theo-
rem 2.1(i) is proved by comparing log-crystalline cohomology to rigid cohomology and then
using the base change theorems and Künneth formula in rigid cohomology together with a
description of the Hasse-Weil L function of A twisted by an Artin representation in terms
of rigid cohomology. The additional hypothesis on the Artin representation (it should have
coefficients in a totally ramified extension of Qp) is necessary to identify the representation
with a unit F -crystal on the curve hence allowing to get a p-adic expression of the twisted
Hasse-Weil L-function.

In view of Corollary 3.12, and the explicit definition of LA/K∞ given above, the equality
of Theorem 2.1(ii) is then obtained by applying the following (straightforward) algebraic
observation to the exact triangles of (7) and (8) (so that one has R = Λ(G) and Σ = S∗).

Lemma 3.14. Let R be an associative unital left noetherian ring and Σ a left Ore set of
non-zero divisors of R. Let

C
a−→ C ′ → C(a)→ C[1]

and
C

b−→ C ′ → C(b)→ C[1]

be exact triangles in Dp(R) which have the property that the complexes RΣ ⊗R C(a) and
RΣ ⊗R C(b) are acyclic.

Then in K0(R,RΣ) one has an equality

∂R,RΣ
(DetRΣ

(aΣ ◦ b−1
Σ )) = χref

R,RΣ
(C(a))− χref

R,RΣ
(C(b))

with aΣ := RΣ ⊗R a and bΣ := RΣ ⊗R b.
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