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Abstract

Let G be the absolute Galois group of a p-adic field. A p-adic representation of
G is said to be ordinary if it has a decreasing, exhaustive and separated filtration of
G-stable subspaces such that the inertia subgroup of G acts by a power of the p-adic
cyclotomic character at each graded piece. In this talk, we look at some examples of
ordinary representations and prove the vanishing of certain Galois cohomology groups
with coefficients in such representations. In particular, we give a necessary and sufficient
condition for the vanishing to hold in the case given by an abelian variety with good
ordinary reduction. Using these local results, we give some consequences for Galois
cohomology of global Galois representations associated with abelian varieties. This
gives a generalization of a result due to Coates, Sujatha and Wintenberger for these
cases.

The author thanks the organizers of the 9th Fukuoka Number Theory Symposium
in Beppu for giving him the opportunity to participate in the symposium.

1 Introduction

The vanishing of cohomology groups associated with p-adic Galois representations defined by
elliptic curves is one of the useful results towards generalization of methods in Iwasawa theory
to larger Galois extensions. Such vanishing enables the computation of Euler characteristics
for discrete modules associated to p-adic Galois representations [4] and Selmer groups of
elliptic curves over extensions containing all p-power roots of unity [2], [3], [15].

The aim of this note is to discuss the the vanishing of cohomology groups with values
in an ordinary p-adic Galois representation with respect to some Galois extensions which
contain all the p-power roots of unity.

Let p be a prime number and K a finite extension of Qp. Fix a separable closure K of K,
write GK := Gal(K/K) for the absolute Galois group of K. Let V be a finite-dimensional
representation of GK over Qp. We denote by

ρ : GK −→ GL(V )

the homomorphism giving the action of GK on the vector space V .
For a general finite-dimensional vector space V over Qp and a compact subgroup G of

End(V ), we write Hm(G,V ) (m = 0, 1, . . .) for the cohomology groups of G acting on V
defined by continuous cochains, where V is endowed with the p-adic topology.

Definition 1.1. The vector space V has vanishing G-cohomology if the cohomology groups
Hm(G,V ) are trivial for all m ≥ 0.

Let K(µp∞) be the smallest field extension of K (in K) which contains all the roots
of unity of order a power of p. Let GK(µp∞ ) be the subgroup of GK that corresponds to
K(µp∞). Denote by GV (resp. HV ) the image of GK (resp. GK(µp∞ )) under ρ. The group
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GV (resp. HV ) can be realised as the Galois group of K(V ) over K (resp. K(µp∞)). In
their study of Euler characteristics of p-adic Galois representations, Coates, Sujatha and
Wintenberger proved the following result:

Proposition 1.2 ([4, Propositions 4.1 and 4.2]). Let (ρ, V ) be a potentially crystalline p-
adic representation of GK . Let K ′ be a finite extension of K such that (ρ|GK′ , V |GK′ ) is
crystalline. Let Φ be the endomorphism acting on the filtered φ-module D(V |GK′ ) associated
with V . Assume that
(1) the eigenvalues of Φ are q-Weil numbers of weight w and
(2) the determinant of Φ is a rational number.
Then:
(i) If w ̸= 0, then V has vanishing GV -cohomology.
(ii) If w is odd, then V has vanishing HV -cohomology.

Let X be a proper smooth variety over K. For an integer i, let H i
ét(XK ,Qp) be the ith

étale cohomology group of X. This is a p-adic representation of GK of finite-dimension over
Qp. Then we have the following

Corollary 1.3. Let X be a proper smooth variety over K with potential good reduction.
Let V = H i

ét(XK ,Qp) and ρ the continuous homomorphism giving the action of GK on V .
Then:
(i) If i ̸= 0, then V has vanishing GV -cohomology.
(ii) If i is odd, then V has vanishing HV -cohomology.

We are interested in identifying the Galois extensions L of K with respect to which the
corresponding cohomology groups vanish as in Theorem 1.2. More precisely, if (ρ, V ) is a p-
adic Galois representation as above and L is a subextension ofK, we want to know when does
V have vanishing JV -cohomology, where JV = ρ(GL). In the case where V = H1

ét(EK ,Qp)
is given by an elliptic curve E over K, it can be shown that when L is given by the field
of p-power division points of another elliptic curve E′ over K, then V has vanishing JV -
cohomology depending on the reduction types of E and E′ (see §3). For instance, if E and E′

both have good ordinary reduction over K, then V does not have vanishing JV -cohomology.
The theorem that we will discuss provides a necessary and sufficient condition on L in order
for some ordinary representation V to have vanishing JV -cohomology. This generalizes our
observation in the case of elliptic curves with good ordinary reduction.

2 Notations and some definitions

Let p be a prime number. Throughout this note K denotes a p-adic local field, that is a
finite extension of the field Qp of p-adic numbers. We denote its ring of integers by OK and
its residue field by k. We fix a separable closure K of K. For a subextension L of K, we
write GL := Gal(K/L). Let Knr be the maximal unramified extension of K in K. We put
IK := Gal(K/Knr), the inertia subgroup of GK .

A p-adic Galois representation ofGK is denoted by (ρ, V ), where V is a finite-dimensional
Qp-vector space and ρ denotes the continuous homomorphism giving the action of GK on
V . For such a p-adic Galois representation, we denote by K(V ) the fixed subfield of K by
the kernel of ρ. Let L be a subfield of K which contains K. As GL is a profinite group,
the image ρ(GL) of GL under ρ is a compact p-adic Lie group contained in GLn(Zp), where
n = dimV . We may identify the group ρ(GL) with the Galois group Gal(K(V )/K(V )∩L).

For a positive integer m, let µpm denote the group of pmth roots of unity. We denote by
µp∞ the union of all µpm as m runs over the set of all positive integers. We let K(µp∞) =
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∪
mK(µpm) denote the field extension obtained by adjoining to K all the p-power roots of

unity. The character χ : GK → Z×
p always denotes the p-adic cyclotomic character (that is,

the character of GK such that g(ζ) = ζχ(g) if g ∈ GK and ζp
m
= 1 for some m). The fixed

subfield of K by the kernel of χ is K(µp∞).
Let A be a g-dimensional abelian variety over K. The Tate-module Tp(A) := lim←−Apn(K)

of A is a free Zp-module of rank 2g. Set Vp(A) = Tp(A) ⊗Zp Qp. Then Vp(A) is a 2g-
dimensional p-adic Galois representation of GK which is dual to H1

ét(AK ,Qp). In this case,
we write K(A∞) instead of K(Vp(A)).

Definition 2.1. Let F be a field. For an algebraic extension F ′ of F , we say that F ′ is a
prime-to-p extension of F if F ′ is a union of finite extensions over F of degree prime-to-p.
If F ′ is a prime-to-p extension over some finite extension field of F , we say that F ′ is a
potential prime-to-p extension of F .

Clearly, if F ′ is a potential prime-to-p extension of F , then every intermediate field F ′′

(with F ⊆ F ′′ ⊆ F ′) is a potential prime-to-p extension of F . In this note, we will consider
algebraic extensions L of a p-adic field K whose residue field kL is a potential prime-to-p
extension over the residue field k of K. Here are some examples of such fields:

Example 2.2. (1) L = K(µp∞).
(2) More generally, if L is a subfield of

K((K×)p
−∞

) :=

∞∪
m=1

K(xp
−m

: x ∈ K×),

then kL is a finite extension, and thus a potential prime-to-p extension of k (cf. [9, Lemma
2.3]).
(3) Let (ρ, V ) be a p-adic Galois representation of GK . If ρ(IK) is an open subgroup of
ρ(GK), then the residue field kL of L = K(V ) is potential prime-to-p over k.

3 Related Results

Theorem 3.1 ([5, Theorem 4.8]). Let X be a proper smooth variety over K with potential
good ordinary reduction (in the sense of Bloch-Kato [1]) and i > 0 an odd integer. Consider
an elliptic curve E/K with potential good supersingular reduction.
(a) Let V = H i

ét(XK ,Qp) and L = K(E∞). Then V has vanishing JV -cohomology, where
JV = ρ(GL);
(b) Let V ′ = Vp(E) and L′ = K(V ), where V is the Qp-vector space in (a). Then V ′ has
vanishing JV ′-cohomology, where JV ′ = ρE(GL′).

Suppose E is an elliptic curve with potential good reduction over K and assume L =
K(E′

∞) is given by another elliptic curve E′. By distinguishing the reduction types of E and
E′, we obtain the following result on the vanishing of JV -cohomology of V = Vp(E), where
JV = ρE(GL). It also involves the case where E′ has potential multiplicative reduction.
This extends some of the results obtained in [11].

Theorem 3.2 ([5, Theorems 5.2 and 5.6]). Let E, E′ and JV be as given above. The
vanishing of JV -cohomology of V = Vp(E) is given by the following table:
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E E′ JV -cohomology vanish

ordinary
ordinary No

supersingular Yes
multiplicative Yes

supersingular
with FCM

ordinary Yes
supersingular with FCM Yes*

supersingular without FCM Yes
multiplicative Yes

supersingular
without FCM

ordinary Yes
supersingular with FCM Yes

supersingular without FCM Yes*
multiplicative Yes

The symbol ∗ means that the vanishing in such cases hold under the additional assump-
tion that the group E(L′)[p∞] of L′-rational points of E of p-power order is finite for every
finite extension L′ of L. For these cases the vanishing of all cohomology groups is determined
by the vanishing of the group H0(JV , V ).

For an abelian variety A over K, we denote by K(A[p]) the field extension obtained by
adjoining to K the coordinates of points of A(K) of order p. In [11], Ozeki studied the
finiteness of the torsion subgroup of A(L) where L is an algebraic extension of K which
contains the field K(µp∞). His results generalize a theorem of Imai [8] for abelian varieties.
There is a further generalization of this in [9]. For abelian varieties with good ordinary
reduction, Ozeki proved the following

Theorem 3.3 ([11, Corollary 2.1]). Let A be an abelian variety over K which has good
ordinary reduction. Let L be a Galois extension of K with residue field kL. Assume that L
contains K(µp∞) and K(A[p]). Then the following statements are equivalent:
(1) H0(GL, Vp(A)) = 0;
(2) A(L)[p∞] is finite;
(3) kL is a potential prime-to-p extension over k.

4 Ordinary Representations

Definition 4.1. A p-adic Galois representation (ρ, V ) of GK is said to be ordinary if there
exists a filtration by GK-invariant subspaces {Fili V }i∈Z with the following properties:

Fili+1 V ⊆ Fili V for all i,

Fili V = V for i≪ 0 and

Fili V = 0 for i≫ 0,

such that the inertia subgroup IK acts on the ith graded quotient Fili V/Fili+1 V by the
ith power of the p-adic cyclotomic character.

Example 4.2. (1) Let A be an abelian variety over K with good ordinary reduction. Let
A denote the Néron model of A over OK . Denote by A(p) the p-divisible group associated
with A and we denote its connected component and maximal étale quotient by A(p)0 and
A(p)ét, respectively. For G = A(p),A(p)0, and A(p)ét, let Tp(G) be the Tate-module and
Vp(G) = Tp(G) ⊗Zp Qp. The connected-étale sequence induces the exact sequence of GK-
modules

0→ Vp(A(p)0)→ Vp(A(p))→ Vp(A(p)ét)→ 0.
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The inertia subgroup IK acts on Vp(A(p)0) by χ, while Vp(A(p)ét) is unramified.
(2) Let f12(z) =

∑∞
n=1 τ(n)e

2πinz be the normalized cusp form of weight 12, level 1. Deligne
constructed a 2-dimensional p-adic representation Vp(f12) of GK associated to f12. Mazur
and Wiles proved that, under a suitable condition, there exists a filtration on Vp(f12) on
which the action of IK has occurring characters χ0 and χ11.

By a result of Perrin-Riou, we have the following characterization of ordinary represen-
tations:

Theorem 4.3 ([12, Theorem 1.5]). Let V be an ordinary representation. Then V is a
semi-stable representation.

Suppose V is ordinary. In view of this theorem, we associate to V a filtered (φ,N)-
module D(V ). Let q = pf be the cardinality of the residue field k of K. Then the fth
iterate Φ = φf of φ is a K0-linear endomorphism of D(V ), where K0 is the maximal
unramified extension of Qp contained in K.

Definition 4.4. A q-Weil number of weight w ≥ 0 is an algebraic integer α satisfying
|ι(α)| = qw/2 for all field embeddings ι : Q(α) ↪→ C.

Definition 4.5. A (φ,N)-module D(V ) over K0 is said to be pure of weight w if the
characteristic polynomial det(X − Φ) has coefficients in Q and all the roots are q-Weil
numbers of weight w.

It is known that if w is an integer and V is a semistable representation of GK such that
(φ,N)-module D(V ) over K0 is pure of weight w, then V is crystalline (see for instance
Remark 4.3 in [4] for a proof of this fact). Thus we have the following

Corollary 4.6. Let V be an ordinary representation. Assume that the associated (φ,N)-
module D(V ) is pure of integer weight. Then V is a crystalline representation.

From this corollary, we obtain the following special case of Proposition 1.2:

Proposition 4.7. Let V be an ordinary representation. Assume that the associated (φ,N)-
module D(V ) is pure of odd weight. Suppose further that the determinant of the endomor-
phism Φ of D(V ) is a rational number. Then V has vanishing GV -cohomology and vanishing
HV -cohomology.

5 The main result

Let (ρ, V ) be a finite-dimensional representation of GK . We consider the following condition:

Assumption 5.1. V has a filtration of length two

0 = V−1 ⊊ V0 ⊊ V1 = V,

such that IK acts on V1/V0 (resp. V0) by χ
a (resp. χb), where a and b are distinct integers.

Theorem 5.2. Let (ρ, V ) be a finite-dimensional potentially crystalline representation of
GK . Let K ′ be a finite extension of K such that (ρGK′ , V ) is crystalline and satisfies
Assumption 5.1. Let Φ = φf denote the endomorphism acting on the associated filtered
φ-module D(V ) Let L be a Galois extension of K containing K(µp∞). Assume that
(1) D(V ) is pure of odd weight,
(2) detΦ ∈ Q,
(3) the residue fielf kL of L is a potential prime-to-p extension of K,
(4) V GL′ = 0 for every finite extension L′ of L.
Put JV = ρ(GL). Then V has vanishing JV -cohomology.
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Combining this result with Theorem 3.3 gives the following

Corollary 5.3. Let A be an abelian variety over K with potential good ordinary reduction.
Let L/K be a p-adic Lie extension containing K(µp∞) and K(A[p]). Put V = Vp(A) and
we write JV = ρ(GL). The following conditions are equivalent:
(1) kL is a potential prime-to-p extension of k;
(2) V GL = 0;
(3) V has vanishing JV -cohomology.

6 Proof of Theorem 5.2

Assumptions (1) and (2) imply that the field K(µp∞) is a finite extension of K(V )∩K(µp∞).
So replacing K by a finite extension, we may assume that K(V ) contains K(µp∞). Put
IV = ρ(IK) and JV = ρ(GL). Let N = K(V ), N∞ = N(µp∞), and M = K(V ) ∩ L. We
make the following identification of p-adic Lie groups

IV ≃ Gal(K(V )/N),

HV ≃ Gal(K(V )/K(µp∞)),

JV ≃ Gal(K(V )/M).

We also let M ′ = L ∩ N∞ = M ∩ N∞, K0 = L ∩ N = M ∩ N , and put G = Gal(M/K0),
H = Gal(M/M ′) and Y = G/H. Then we have the following diagram of fields:

K(V )

IV

FF
FF

FF
FF

F L

~~
~~

~~
~~

N∞

GGGGGGGG M

H

GN

GG
GG

GG
GG

G M ′

Y

K0

K

By assumption (3), the residue field kM of M is a potential prime-to-p extension of k.
Since N/K is unramified, the the field K0 is of finite degree over K. Replace K with K0,
we may assume that G = Gal(M/K). Then we have the following commutative diagram
with exact rows and surjective vertical maps

1 // Gal(K(V )/N∞) //

����

IV //

����

Gal(N∞/N) //

����

1

1 // H // G // Y // 1

(1)

Moreover, the above diagram is compatible with the action by inner automorphisms.
We now make use of assumption 5.1. Let 0 = V−1 ⊊ V0 ⊊ V1 = V be a filtration on

V which satisfies the additional conditions given in assumption 5.1. Let n = dimQp
V and
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d = dimQp
V0. Let {v1, . . . , vn} be a basis of V such that {v1, . . . , vd} is a basis of V0. Then

the representation ρ of GV on V can be written by(
(χa)⊕d · U1(σ) T (σ)

0 (χb)⊕n−d · U2(σ)

)
σ ∈ GV , (2)

where U1 : GV → GLd(Zp) and U2 : GV → GLn−d(Zp) are continuous unramified homo-
morphisms and T : GV → Md×n−d(Zp) is a continuous map. Here, for integers r and s,
(χr)⊕s(σ) denotes the s× s diagonal matrix with entries χr(σ).

The commutative diagram (1) and the representation (2) together imply that the action
of the group G on HV /JV is given by

σ · τ · σ−1 = τ ε(σ), σ ∈ G, τ ∈ HV /JV ,

where ε denotes the character χa−b. This is non-trivial and is continuous with open image
in Z×

p .
We use the following lemma:

Lemma 6.1. Let ψ : G → GLQp
(W ) be a continuous Qp-linear representation of G on

a finite-dimensional Qp-vector space W . Let ε : G → Z×
p be a continuous character of G

whose image is open in Z×
p . Assume that the following relation holds:

σ · τ · σ−1 = τ ε(σ)

for all σ ∈ G, τ ∈ H. Then after a finite extension K ′/K, the subgroup H acts unipotently
on W .

Considering Hn(JV , V ) as a representation of G, Lemma 6.1 implies that there is a
subgroup Ω ⊆ HV /JV of finite index such that Ω acts unipotently on Hn(JV , V ). Replacing
K by a finite extension, we may identify Ω with HV /JV .

Lemma 6.2. Let φ : U → GLQp
(W ) be a representation of a group U on a finite-

dimensional Qp-vector space W . Suppose U acts unipotently on W . Then WU = 0 if
and only if W = 0.

Now, conditions (i) and (ii) imply that V has vanishing HV -cohomology. We now prove
that V has vanishing JV -cohomology by induction. First, we have

H0(Ω,H0(JV , V )) ≃ H0(HV , V ) = 0.

Since Ω acts unipotently on H0(JV , V ), Lemma 6.2 implies that H0(JV , V ). Assume that
Hr(JV , V ) for r = 0, . . . ,m−1, where m ≥ 1. The Hochschild-Serre spectral sequence gives
an exact sequence

Hm(HV , V )→ H0(Ω, Hm(JV , V ))→ Hm+1(Ω,H0(JV , V )).

As the first and third terms are trivial we have H0(Ω,Hm(JV , V )) = 0. Once again since
Ω acts unipotently on Hm(JV , V ), applying Lemma 6.2 implies that V has vanishing JV -
cohomology. This ends the proof of our main theorem.
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