
Kernels of twisted symmetric square of elliptic modular forms

Yoshinori Mizuno∗

I would like to talk about exact evaluation of special L-values of elliptic modular forms.
To explain my approach, I discuss on the simplest case of twisted symmetric square.

Notation. We use some standard noation. H1 = {τ = u+iv; v > 0} is the upper half-plane.
The action of SL2(R) on H1 is denoted by

(
a b
c d

)
τ = aτ+b

cτ+d . The branch of zα is taken so
that −π < arg z ≤ π. The Petersson inner product is

< f, g >N=

∫
DN

f(τ)g(τ)vkdµ, dµ =
dvdu

v2
,

where DN = Γ0(N) \H1 is a fundamental domain. Let us use this notation for functions f
and g, whenever it is well-defined and has a finite value. Γ1 = SL2(Z) is the full modular
group. Mk(N), Sk(N) are the space of modular forms and cusp forms of weight k on Γ0(N).
As usual, e(x) = e2πix and j(γ, τ) = cτ+d is the automorphic factor for γ =

(
a b
c d

)
∈ SL2(R).

1 Twisted symmetric square

For an even integer k ≥ 4, let

f(τ) =

∞∑
n=1

b(n)e(nτ) ∈ Sk(1)

be a Hecke eigen cusp form of weight k and level 1. To such an f and a Dirichlet character
χ, we associate the twisted symmetric square L-function defined by

L2(s, f, χ) := L(2s, χ2)

∞∑
n=1

χ(n)b(n2)

ns+k−1
(ℜ(s) = σ > 1).

By Shimura, it can be continued meromorphically to all s. The holomorphy is also investi-
gated by him.

Shimura (1975). L2(s, f, χ) has a meromorphic continuation to C. More precisely,

s(s− 1)Γ

(
s+ k − 1

2

)
Γ

(
s+ k

2

)
Γ (s+ 1− η)L2(s, f, χ)

is holomorphic on s ∈ C, where η ∈ {0, 1} such that χ(−1) = (−1)η.

Sturm got the following algebraicity result on special values.

Sturm (1980, 1989). Assume χ is even and primitive. For any odd l (1 ≤ l ≤ k − 1)

π

3
· L2(l, f, χ)

πk+2l < f, f >1
∈ Q.
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Outline of proof. Sturm uses the following integral representation due to Shimura:

L2(s, f, χ) =< θχH(·, s), f >4r2 ,

where

r : the conductor of χ,

θχ(τ) : theta series with character,

H(τ, s) : a real analytic Eisenstein series of half-integral weight,

θχ(τ)H(τ, s) is a real analytic modular form of weight k on Γ(4r2).

Analytic properties of H(τ, s) implies those of L2(s, f, χ). Algebraicity result follows from
specializing s = l:

=⇒ θχ(τ)H(τ, l) is a nearly holomorphic modular form;
=⇒ L2(l, f, χ) =< θχH(·, l), f >4r2∈ πk+2l−1 < f, f >1 Q by Shimura.

Obstacle to get exact values

In order to compute exact values L2(l, f, χ) at s = l, we need to analyze Mk(4r
2) in order

to describe the nearly holomorphic modular form in termes of basis of level 4r2. But

dimMk(4r
2) ≫ dimSk(1).

It is desirable to work out needed computations inside the space of lower level, for example
Sk(1).

2 Known methods

We shall introduce some known methods to compute the exact L-values. Let us start from
the simplest case, namely the case without twisting by characters. Suppose that f ∈ Sk(1)
is a Hecke eigen cusp form of weight k ≥ 4 and level 1, and χ0 is the principal character
mod 1.

Zagier (1976, χ = χ0). Using Hecke eigen basis {fj(τ)}1≤j≤dimSk(1) ⊂ Sk(1), Zagier
constructed a holomorphic kernel function of the symmetric square L-function by

Φs(τ) :=

dimSk(1)∑
j=1

L2(s, fj , χ0)

< fj , fj >1
fj(τ) ∈ Sk(1).

Therefore < Φs, fj >1= L2(s, fj , χ0).

He expresses the n-th Fourier coefficient cn(s) of Φs as

cn(s) ≒
∫
D1

ωn(τ,−τ)E(τ, s)vkdµ (s ∈ C),

ωn(τ, τ
′) =

∑
a,b,c,d∈Z
ad−bc=n

1

(cττ ′ + dτ ′ + aτ + b)k
(τ, τ ′ ∈ H1),

where E(τ, s) is the real analytic Eisenstein series on Γ1.
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In fact, by Petersson, we have < f, ωn(∗,−τ ′) >1≒ f |T (n)(τ ′). Therefore

ωn(τ, τ
′) ≒

dimSk(1)∑
j=1

bj(n)

< fj , fj >1
fj(τ)fj(τ

′).

Since L2(s, fj , χ0) ≒
∑∞

n=1 χ0(n)bj(n)
2n−(s+k−1) for Hecke eigenforms fj , the well-known

integral representation of the Rankin convolution
∑∞

n=1 χ0(n)bj(n)
2n−s implies the desired

formula.
Then, Zagier calculates the integral explicitly. An explicit form of cn(s) is

cn(s) = (−1)
k
2n

k−1
2 π

∑
r∈Z

I(r, n, s)
Lr2−4n(s)

ζ(2s)
+ δ(n = m2)(· · · ),

where

I(r, n, s) : a certain special function,

LD(s) : a quadratic L-function,

δ(n = m2) :=

{
1 if n is square of a natural number m,

0 otherwise.

For the precise definition of LD(s) and I(r, n, s), see section 3 of this report. The infinite
sum is absolutely convergent, if 2 − k < ℜ(s) < k − 1. As a result, he computed the
special L-values by the following manner.

Specialize s = l with 1 ≤ l : odd < k − 1:
=⇒ the infinite sum turns out to be a finite sum;
=⇒ evaluate cn(l) exactly as a numerical value;
=⇒ an explicit description of Φl(τ) in terms of Hecke basis;
=⇒ exact evaluation of L2(l, fj , χ0) (just a coefficient in the Hecke basis expression).

There are other applications of Zagier’s kernel function:

(1) Trace formula of the Hecke operators (Zagier);

(2) reconstruction of Cohen’s modular forms (Zagier);

(3) estimation of Ramanujan’s τ(n) (Hashim-Murty);

(4) non-vanishing of symmetric square on average (Kohnen-Sengupta);

(5) estimation of central value of symmetric square on average (Kohnen-Sengupta).

Mizumoto (1985, χ = χ0). Following a suggestion given in Zagier’s paper, Mizumoto
constructed the kernel function by using infinite sum of the Poincare series. Here the
Poincare series is defined for n ≥ 1 by

Pn(τ) =
∑

γ∈Γ∞\Γ1

e(n · γτ)
j(γ, τ)k

∈ Sk(1).

Recall that the n-th Poincare series is a kernel function of the n-th Fourier coefficient,
< f, Pn >1≒ b(n). He considers the function

Ψs(τ) :=
∑
n≥1

nk−1−sPn2(τ) ∈ Sk(1) (σ > 1).
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Therefore < f,Ψs >1≒
∑

n≥1 b(n
2)n−(s+k−1).

Using the Fourier expansion of the Poincare series combined with the Poisson summation
formula, he calculates the Fourier coefficients to get a formula similar to Zagier’s. Mizumoto
also worked out his calculation in the case of Hilbert modular forms.

So far, we discuss only the case without twisting. An actual twisted case is discussed by
Stopple.

Stopple (1996, χ = χp). Here χp =
(p
·

)
is Kronecker’s symbol and a prime p ≡ 1 (mod 4).

Stopple follows Mizumoto’s method in order to construct a kernel function of the symmetric
square twisted by χp,

Ψ
χp
s (τ) :=

∑
n≥1

χp(n)n
k−1−sPn2(τ) ∈ Sk(1).

Therefore < f,Ψ
χp
s >1≒

∑
n≥1 χp(n)b(n

2)n−(s+k−1).
Compared with Sturm, a remarkable point is that the kernel function is a modular form

of level one. In fact, Stopple determined some special values of the twisted symmetric square
exactly. See section 3 of this report.

Goto (1998), Hiraoka (2000). They used Hida’s identity. They gave three exact values
of the twisted symmetric square and some values of other type of L-functions.

Katsurada (2005). He applies the pullback of degree 2 level p2 involuted Siegel-Eisenstein

series E
(2)
k |W (Z, s) due to Böcherer-Schmidt combined with Ibukiyama’s differential opera-

tor. He computed many exact values of the twisted symmetric square.

Panchishkin (1979). He used the trace operator, but not clear for me whether the ready
to compute formula is obtained or not.

3 Our approach

Now my construction of the kernel function of twisted symmetric square is as follows. For
simplicity, assume that a prime p is congruent to 1 modulo 4, χ is even primitive Dirichlet
character modulo p. Let f ∈ Sk(1) be a Hecke eigen cusp form of weight k ≥ 4 and level 1.

Jacobi Eisenstein series (see Guerzhoy). 2σ + k > 3, (τ, z) ∈ H1 ×C,

Eχ
k,p2

(τ, z, s) =
vs

2

∑
c,d∈Z
(c,d)=1

∑
λ∈Z

χ(λ)
e(λ2 aτ+b

cτ+d + 2pλ z
cτ+d − p2 cz2

cτ+d)

(cτ + d)k|cτ + d|2s
.

Restriction z = 0. Note the followings (see Heim):

Eχ
k,p2

(τ, 0, s) =
∑

γ∈Γ∞\Γ1

θχ(γτ)

j(γ, τ)k
ℑ(γτ)s, θχ(τ) =

∑
λ∈Z

χ(λ)e(λ2τ),

< Eχ
k,p2

(·, 0, s), f > =

∫ ∞

0

∫ 1

0
θχ(τ)f(τ)v

s+k−2dudv =
2Γ(s+ k − 1)

(4π)s+k−1

∞∑
λ=1

χ(λ)b(λ2)

λ2s+2k−2
.

Hence, if we put

EJ
s (τ) :=

Γ(k − 1)(4π)
s−k+1

2

2Γ( s+k−1
2 )

Eχ
k,p2

(
τ, 0,

s− k + 1

2

)
,
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then

EJ
s (γτ) = (cτ + d)kEJ

s (τ) (∀γ ∈ Γ1),

< EJ
s , f >1 =

Γ(k − 1)

(4π)k−1
· L2(s, f, χ)

L(2s, χ2)
,

since b(n) are real. In other words, EJ
s is a non-holomorphic kernel of the twisted symmetric

square.

Fourier expansion (One of our main results. See also Eichler-Zagier, Guerzhoy).

Eχ
k,p2

(τ, z, s) = vs
∑
λ∈Z

χ(λ)e(λ2τ + 2pλz)

+
vs

(2i)1/2p

∑
n,r∈Z

eχ(n, r, s)τn− r2

4p2

(
v, s+ k − 1

2
, s

)
e
−2π r2

4p2
v
e(nu+ rz).

τl(v, α, β) =

∫ ∞

−∞
e−2πiluτ−ατ−βdu is the analytic part:

τl(v, α, β) = iβ−α ·



π
α+β
2 l

α+β
2

−1

Γ(α)
v−

α+β
2 Wα−β

2
,α+β−1

2
(4πlv) if l > 0,

π
α+β
2 |l|

α+β
2

−1

Γ(β)
v−

α+β
2 Wβ−α

2
,β+α−1

2
(4π|l|v) if l < 0,

22−α−βπ
Γ(α+ β − 1)

Γ(α)Γ(β)
v1−α−β if l = 0.

Here

Wκ,µ(v) :=
vµ+

1
2 e−

v
2

Γ(µ− κ+ 1
2)

∫ ∞

0
e−vttµ−κ− 1

2 (1 + t)µ+κ− 1
2dt

is the Whittaker function, initially defined for ℜ
(
µ− κ+ 1

2

)
> 0 and its holomorphic con-

tinuation to all (κ, µ) ∈ C2. Note that Wκ,µ(v) = vµ+
1
2 e−

v
2Ψ

(
µ− κ+ 1

2 , 2µ+ 1; v
)
using

the notation of Lebedev.
eχ(n, r, s) = B(n, r, s) · C(n, r, s) is the arithmetic part. Explicit forms are as follows:

B(n, r, s) =
Lr2−4p2n(2s+ k − 1, χ)

L(2(2s+ k − 1), χ2)
.

Here

LD(s, χ) :=


L(2s− 1, χ2) if D = 0,

L(s, χKχ)
∑
a|f

µ(a)χK(a)χ(a)a−sσ1−2s,χ2(f/a) if D ̸= 0, D ≡ 0, 1 (mod 4),

0 if D ≡ 2, 3 (mod 4),

where

K = Q(
√
D),

dK : discriminant of K,

f ∈ N : D = dKf
2,

χK : the Kronecker symbol,

µ : the Möbius function,

σs,χ(n) =
∑
d|n

χ(d)ds.
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Note here that Zagier’s LD(s) is LD(s, χ0) in our notation:

C(n, r, s) =W (χ) ·


χ(r) if p ∤ r,
∞∑
l=1

H̃n,r(l)

p(2s+k−1)l
if p | r,

W (χ) =

p∑
λ=1

χ(λ)e

(
λ

p

)
,

H̃n,r(l) =
∑

λ(pl),Qp(λ)≡0 (pl−1)

χ(λ)χ

(
Qp(λ)

pl−1

)
,

Qp(λ) = λ2 +
r

p
λ+ n.

In the case p|r = pr̂, we put

Fr̂,n(T ) :=

∞∑
l=1

H̃n,r(l)T
l.

an explicit form of Fr̂,n(T ). Put

α = H̃n,r(1) =
∑
λ(p)

χ(λ)χ (Qp(λ)) , β = χ(−2r̂)
∑
λ(p)

χ
(
λ2

)
,

γ = χ(−2r̂)
∑
λ(p)

χ
(
λ2 −DKf

2
0

)
, δ = χ(−2r̂)χ

(
−DK

p
f20

)
,

where DK and f0 will be introduced in the following.

r̂2 − 4n ̸= 0

� If p ∤ r̂2 − 4n =⇒ Fr̂,n(T ) = αT .

� If p | r̂2 − 4n, denote r̂2 − 4n = DKf
2, pm||f = pmf0.

If p ∤ DK =⇒ Fr̂,n(T ) = αT + β

m−1∑
e=1

peT 2e+1 + γpmT 2m+1

=
T

1− pT 2
{α− (α− β)pT 2 + pmT 2m(γ − β − pγT 2).

If p | DK =⇒ Fr̂,n(T ) = αT + β

m∑
e=1

peT 2e+1 + δpm+1T 2m+2

=
T

1− pT 2
{α− (α− β)pT 2 − pm+1T 2m+1(δpT 2 + βT − δ).

r̂2 − 4n = 0 =⇒ Fr̂,n(T ) = αT + β

∞∑
e=1

peT 2e+1 =
T

1− pT 2
{α− (α− β)pT 2}.

Remark. If χ = χp, we can compute the character sums in more explicit forms (see Small). In
fact, if p|r̂2−4n, then α = −χp(−2r̂), β = χp(−2r̂)(p−1) = −α(p−1), γ = −χp(−2r̂) = α,

δ = −αχp

(
−DK

p

)
.
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Fourier expansion of EJ
s . Put

EJ
s (τ) =

Γ(k − 1)(4π)
s−k+1

2

2Γ( s+k−1
2 )

Eχ
k,p2

(
τ, 0,

s− k + 1

2

)
=:

∑
n∈Z

cn(v)e(nu).

Then

cn(v) =
Γ(k − 1)(4π)

s−k+1
2

Γ( s+k−1
2 )

{
δ(n = m2)v

s−k+1
2 χ(m)e(m2iv)

+
∑
r∈Z

1

(2i)1/24s
· A(n, r, s)

p
v

s−k+1
2 τ

4n− r2

p2

(
v

4
,
s+ k

2
,
s− k + 1

2

)
e
−2π r2

4p2
v
}
.

We defined

A(n, r, s) := eχ

(
n, r,

s− k + 1

2

)
=
Lr2−4p2n(s, χ)

L(2s, χ2)
×W (χ) ·

{
χ(r) if p ∤ r,
Fr̂,n(p

−s) if p | r.

Holomorphic projection lemma (Zagier, Sturm). Φ : H1 → C : a continuous function
having the Fourier expansion Φ(τ) =

∑∞
n=−∞ cn(v)e(nu) for all τ = u+ iv ∈ H1. Suppose

(1) ∃k > 2 (even) such that Φ(γτ) = (cτ + d)kΦ(τ) ∀γ ∈ Γ1,

(2) ∃ϵ > 0 such that Φ(τ) = O(v−ϵ) (uniform w.r.t u) as v → ∞.

Define

ϕ(τ) =
∞∑
n=1

ane(nτ),

an =
(4πn)k−1

Γ(k − 1)

∫ ∞

0
cn(v)e

−2πnvvk−2dv.

Then

(a) ϕ ∈ Sk(1),

(b) < ϕ, f >1=< Φ, f >1 ∀f ∈ Sk(1).

Notation. Write πhol(Φ) = ϕ, and call it a holomorphic projection of Φ.

Remark. (2) can be weakened as Φ(τ) = c0+O(v−ϵ) by subtracting Eisenstein series (Zagier).

Holomorphic kernel. Suppose 1/2 < σ < k − 1, s ̸= 1. Then, there exists EJ
s (τ) :=

πhol(E
J
s ) ∈ Sk(1). By (b),

< EJ
s , f >1=

Γ(k − 1)

(4π)k−1
· L2(s, f, χ)

L(2s, χ2)
.

By definition, the Fourier expansion of EJ
s is

EJ
s (τ) =

∞∑
n=1

a(n, s)e(nτ),

a(n, s) =
(4πn)k−1

Γ(k − 1)

∫ ∞

0
cn(v)e

−2πnvvk−2dv.
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Explicitly, if 1/2 < σ < k − 1, s ̸= 1,

a(n, s) = δ(n = m2)(χ(m)mk−s−1 +G2pm(s) +G−2pm(s)) +
∑

r∈Z,r2 ̸=4p2n

Gr(s),

where

Gr(s) = (−1)
k
2 πn

k−1
2 p−sI(r, np2, s)A(n, r, s),

I(r, n, s) =



n
s−1
2 2s−1πs−1Γ(

k−s
2 )

Γ( s+k
2 )

F

(
k − s

2
, 1− s+ k

2
;
1

2
;
r2

4n

)
if 4n > r2,

n
k−1
2 2sπs−1rs−kΓ(k − s) cos(π s−k

2 )

Γ(k)
F

(
k − s

2
,
k − s+ 1

2
; k;

4n

r2

)
if 4n < r2,

n
s−1
2 2s−1πs−

1
2

Γ(k−s
2 )Γ(s− 1

2)

Γ( s+k
2 )Γ(1−k+s

2 )Γ(k+s−1
2 )

if 4n = r2.

Here F (a, b; c; z) is Gauss’s hypergeometric function

F (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)nn!

zn, (a)0 := 1, (a)n :=
Γ(a+ n)

Γ(a)
.

The infinite sum multiplied by s(1 − s) is absolutely convergent, if 1/2 < σ < k − 1. Also
our computations can be justified. We used the followings in order to deduce these facts:

(behaviour of Wκ,µ(v))

Wκ,µ(v) ∼ vκe−
v
2 as v → ∞, Wκ,µ(v) =

{
O(v

1
2
−|ℜ(µ)|) if µ ̸= 0,

O(v
1
2 | log v|) if µ = 0,

as v → 0;

(integral transform) a > 0, β > 0, ℜ (s) > |ℜ(µ)| − 1/2,∫ ∞

0
e−avWκ,µ(βv)v

s−1dv

=
βµ+

1
2Γ(µ+ s+ 1

2)Γ(−µ+ s+ 1
2)

Γ(s− κ+ 1)(a+ β
2 )

µ+s+ 1
2

· F
(
µ+ s+

1

2
, µ− κ+

1

2
; s− κ+ 1;

2a− β

2a+ β

)
;

(transformation formula)

F (a, b; c; z) = (1− z)−aF

(
a, c− b; c;

z

z − 1

)
;

(a consequence of Rademacher’s Phragmen-Lindelof theorem) One has

|L∆(s)| ≤
(
|∆|
2π

) 3
4
−σ

2

|1 + s|
3
4
−σ

2 ζ(3/2)2ζ(2)

for all ∆ ̸= 2, s ∈ S(−1/2, 3/2) = {s = σ + it : −1/2 ≤ σ ≤ 3/2}.

|s(1− s)L∆(s)| ≤
(
|∆|
6π

) 3
4
−σ

2

|1 + s|
5
4
+σ

2 ζ(3/2)2ζ(2)

for all ∆ = 2 ̸= 0, s ∈ S(−1/2, 3/2).

Remark. For all ∆ ̸= 0 and s ∈ C with ℜ(s) = σ > 1, one has |L∆(s)| ≤ ζ(σ)2ζ(2σ + 1).
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Remark. Recall L∆(s) = L∆(s, χ0). If χ is quadratic, the above type estimate is sufficient
for our use. For non-quadratic χ, we can prove similar estimations of L∆(s, χ) using its
functional equation and Rademacher’s Phragmen-Lindelof theorem.

Special L-values. Let 1 ≤ s = l : odd < k − 1. If 4n < r2, then I(r, n, l) = 0 in view of
cos

(
π s−k

2

)
. If 4n > r2, then F

(
k−s
2 , 1− s+k

2 ; 12 ;x
)
is just a polynomial of x. In fact,

I(r, n, l) = (−1)
k−l−1

2 (2π
√
n)l−122l−1Γ(k − l)Γ(l)

Γ(l + k − 1)

(
1− r2

4n

)l− 1
2

C l
k−l−1

(
r

2
√
n

)
,

where

C l
m (x) =

[m/2]∑
j=0

(−1)j(l)m−j

j!(m− 2j)!
(2x)m−2j

is the Gegenbauer polynomial. It turned out that s = 1 is a removable singularity. Following
the manner similar to Zagier, we can compute some special L-values.

Specialize s = l with 1 ≤ l : odd < k − 1:
=⇒ the infinite sum turns out to be a finite sum;
=⇒ evaluate a(n, l) exactly as a numerical value;
=⇒ an explicit description of EJ

l (τ) in terms of Hecke basis in Sk(1) (easier thanMk(4p
2));

=⇒ exact evaluation of L2(l, fj , χ) (just a coefficient in the Hecke basis expression).

Examples (p = 5, k = 12, n = 1, χ = χ5, 1 ≤ r : odd < 11).

I(l, ν, r) = (−1)
r+1
2 πr−12r−1ν−

r
2
Γ(12− r)Γ(r)

Γ(11 + r)
(4ν − l2)r−

1
2Cr

11−r

(
l

2
√
ν

)
,

L−N (r, χ0) = (−1)
r−1
2

2r−1πr

Γ(r)N r− 1
2

H(r,N),

H(r,N) = L(1− r, χK)
∑
a|f

µ(a)χK(a)χ(a)ar−1σ2r−1(f/a) (−N = DKf
2),

b(n, s) =
p2(k − 1)

4π2
ζ(2s)

p2s − 1

p2s
· a(n, s).

Here, I introduced b(n, s) following Stopple, in order to compare my calculations with his
result. Since, S12(1) = C∆, one has EJ

r = a(1, r)∆ and

b(1, r) =
52 · 11
4π2

ζ(2r)
52r − 1

52r
· a(1, r) = 52 · 11!

412π13
· L2(r,∆, χ5)

< ∆,∆ >1
.

On the other hand,

b(1, r) = 2dr

9∑
l=1

χ5(l)C
r
11−r

(
l

10

)
H(r, 5(100− l2))

+ 5r−1dr

{
−2Cr

11−r(0)H(r, 20) + 4Cr
11−r

(
1

2

)
H(r, 15)

}
+

11

4π2
ζ(2r)

52r − 1

52r−2
,

dr = −11 · 22r−4π2r−25−3r+3Γ(12− r)

Γ(11 + r)
.

We have the following data using Mathematica:

65



(l,−5(100− l2), DK , f) χ5(l) H(1, 5(100− l2)) −252H(3, 5(100− l2)) H(5, 5(100− l2))
(1,−495,−55, 3) 1 20 25502400 341984 · 19765
(2,−480,−120, 2) −1 12 21122640 11133604 · 513
(3,−455,−455, 1) −1 20 21288960 4644833280
(4,−420,−420, 1) 1 8 14706720 3125844488
(6,−320,−20, 4) 1 14 7990920 3522 · 262657
(7,−255,−255, 1) −1 12 4838400 341655552
(8,−180,−20, 3) −1 6 1776600 3522 · 19603
(9,−95,−95, 1) 1 8 423360 4033248

H(1, 20) = 2, H(1, 15) = 2,

H(3, 20) =
7560

−252
, H(3, 15) =

4032

−252
,

H(5, 20) = 3522, H(5, 15) = 992,

ζ(2) =
π2

6
, ζ(6) =

π6

33 · 5 · 7
, ζ(10) =

π10

35 · 5 · 7 · 11
,

C1
10

(x
2

)
= −1 + 15x2 − 35x4 + 28x6 − 9x8 + x10,

C3
8

(x
2

)
= 15− 210x2 + 420x4 − 252x6 + 45x8,

C5
6

(x
2

)
= −35 + 420x2 − 630x4 + 210x6.

Accordingly, we get the following values:

b(1, 1) =
20901888

390625
=

212 · 36 · 7
58

,

b(1, 3) =
735694848

3173828125
π4 =

212 · 32 · 7 · 2851
512 · 13

π4,

b(1, 5) =
148596228096

69427490234375
π8 =

215 · 3 · 1511599
517 · 7 · 13

π8.

These coincide with the values obtained by Stopple.

4 Variation

Our approach suggests some natural variants. Although, I have not worked out yet, I hope
to consider the following generalization.

matrix index Jacobi Eisenstein series. 2σ + k > 4, (τ, z) ∈ H1 × C2,1. Let T be a
positive definite integral binary quadratic form,

Ek,T (τ, z, s) =
vs

2

∑
c,d∈Z, (c,d)=1

∑
λ∈Z2

e(T [λ]aτ+b
cτ+d + 2tλTz

cτ+d − cT [z]
cτ+d)

(cτ + d)k|cτ + d|2s
.

Restriction z = 0: Note the followings:

Ek,T (γτ, 0, s) = (cτ + d)kEk,T (τ, 0, s) ∀γ ∈ Γ1,

< Ek,T (·, 0, s), f > =
Γ(s+ k − 1)

(4π)k−1

∞∑
n=1

rT (n)b(n)

ns+k−1
,

rT (n) = ♯{λ ∈ Z2;T [λ] = n}.
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In other words, Ek,T (τ, 0, s) is a non-holomorphic kernel of the Rankin convolution series of
Hecke eigen cusp form and a binary theta series.

Taking the holomorphic projection and working out the calculation as before, we may
compute some special values of the Rankin convolution. Such a special value appears in
Böcherer-Mizumoto’s formula of the T -th Fourier coefficient of Klingen’s Eisenstein series
of degree 2. As special case, we can consider the holomorphic projection of the restriction
of Hermitian Jacobi Eisenstein series, which is discussed in Kohama’s master thesis.

higher dimension. 2σ + k > n + l + 1, (τ, z) ∈ Hn × Cl,n. Let T be a positive-definite
l × l half-integral symmetric matrix,

E
(n)
k,T (τ, z, s)

= (detℑv)s
∑

γ=
(
a b
c d

)
∈Γ(n)

∞ \Spn(Z)
λ∈Zl,n

e(tr{T [λ] · γτ + 2tλTz · J(γ, τ)−1 − T [z] · J(γ, τ)−1c})
det J(γ, τ)k| det J(γ, τ)|2s

,

J(γ, τ) = cτ + d, τ = u+ iv ∈ Hn(v > O),
(
a b
c d

)
τ = (aτ + b)(cτ + d)−1.

Restriction z = 0 B. Heim showed that

E
(n)
k,T (γτ, 0, s) = det J(γ, τ)kE

(n)
k,T (τ, 0, s) (∀γ ∈ Spn(Z)),

< E
(n)
k,T (∗, 0, s), f > ≒

∑
λ∈Zl,n/GLn(Z)

b(T [λ])

det(T [λ])s+k−n+1
2

for a Siegel cusp form f(τ) =
∑

A>O b(A)e(tr(Aτ)) of degree n and weight k. In other

words, E
(n)
k,T (τ, 0, s) is a non-holomorphic kernel of the theta transform (the standard zeta

function). In order to work out our approach in this higher genus case, some problems arise:

(1) computing the Fourier expansion of the real analytic Jacobi-Eisenstein series of higher
genus;

(2) calculating integral transforms of the confluent hypergeometric functions of generel
degree.

On (2), what kind of special functions of matrix argument occur, which will be an
analogue of the Gauss hypergeometric function. Then, what kind of special polynomials
appear as analogue of the Gegenbauer poynomials. To compare such a special polynomial
and the polynomials arising from Ibukiyama’s differential operators seems interesting.

We can generalize our construction to the twisted symmetric square L-functions associ-
ated to elements in Sk(N,ψ). Also, it seems to be interesting to consider Hilbert Jacobi
Eisenstein series. See Takase and Mizumoto for Hilbert modular analogue of Zagier’s
kernel function.
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