
Noether’s problem and unramified Brauer groups

(joint work with M. Kang and B. E. Kunyavskii)

Akinari Hoshi (Rikkyo University)

In this talk, I explain the content of the joint paper [HKK] with Ming-chang Kang and
Boris E. Kunyavskii.

1 Introduction

Let k be any field and G be a finite group. Let G act on the rational function field k(xg : g ∈
G) by k-automorphisms so that g ·xh = xgh for any g, h ∈ G. Denote by k(G) the fixed field
k(xg : g ∈ G)G. Noether’s problem asks whether k(G) is rational (= purely transcendental)
over k. It is related to the inverse Galois problem, to the existence of generic G-Galois
extensions over k, and to the existence of versal G-torsors over k-rational field extensions
[Sw, Sa1, GMS, 33.1, p. 86]. Noether’s problem for abelian groups was studied by Swan,
Voskresenskii, Endo, Miyata and Lenstra, etc. The reader is referred to Swan’s paper for a
survey of this problem [Sw].

On the other hand, just a handful of results about Noether’s problem are obtained when
the groups are not abelian. It is the case even when G is a p-group.

Before stating the results of Noether’s problem for non-abelian p-groups, we recall some
relevant definitions.

Definition 1.1. Let k ⊂ K be an extension of fields. K is rational over k (for short,
k-rational) if K is purely transcendental over k. K is stably k-rational if K(y1, . . . , ym) is
rational over k for some y1, . . . , ym such that y1, . . . , ym are algebraically independent overK.
When k is an infinite field,K is said to be retract k-rational if there is a k-algebraA contained
in K such that (i) K is the quotient field of A, (ii) there exist a non-zero polynomial f ∈
k[X1, . . . , Xn] (where k[X1, . . . , Xn] is the polynomial ring) and k-algebra homomorphisms
φ : A → k[X1, . . . , Xn][1/f ] and ψ : k[X1, . . . , Xn][1/f ] → A satisfying ψ ◦ φ = 1A. (See
[Sa2, Ka] for details.) It is not difficult to see that “k-rational” ⇒ “stably k-rational” ⇒
“retract k-rational”.

Definition 1.2. Let k ⊂ K be an extension of fields. The notion of the unramified Brauer
group of K over k, denoted by Brv,k(K) was introduced by Saltman [Sa3]. By definition,
Brv,k(K) =

∩
R Image{Br(R) → Br(K)} where Br(R) → Br(K) is the natural map of

Brauer groups and R runs over all the discrete valuation rings R such that k ⊂ R ⊂ K and
K is the quotient field of R.

Lemma 1.3 (Saltman [Sa3, Sa4]). If k is an infinite field and K is retract k-rational, then
the natural map Br(k) → Brv,k(K) is an isomorphism. In particular, if k is an algebraically
closed field and K is retract k-rational, then Brv,k(K) = 0.

Theorem 1.4 (Bogomolov, Saltman [Bo, Sa5, Theorem 12]). Let G be a finite group, k
be an algebraically closed field with gcd{|G|, char k} = 1. Let µ denote the multiplicative
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subgroup of all roots of unity in k. Then Brv,k(k(G)) is isomorphic to the group B0(G)
defined by

B0(G) =
∩
A

Ker{res : H2(G,µ) → H2(A,µ)}

where A runs over all the bicyclic subgroups of G (a group A is called bicyclic if A is either
a cyclic group or a direct product of two cyclic groups).

Note that B0(G) is a subgroup of H2(G,µ) (where gcd{|G|, char k} = 1). Since H2(G,
µ) ≃ H2(G), which is the Schur multiplier of G (see [Kar]), we will call B0(G) the Bogomolov
multiplier of G, following the convention in [Ku]. Because of Theorem 1.4 we will not distin-
guish B0(G) and Brv,k(k(G)) when k is algebraically closed and gcd{|G|, char k} = 1. In this
situation, B0(G) is canonically isomorphic to

∩
AKer{res : H2(G,Q/Z) → H2(A,Q/Z)},

i.e. we may replace the coefficient µ by Q/Z in Theorem 1.4.
Using the unramified Brauer groups, Saltman and Bogomolov are able to establish

counter-examples to Noether’s problem for non-abelian p-groups.

Theorem 1.5. Let p be any prime number, k be any algebraically closed field with char k ̸= p.
(1) (Saltman [Sa3]) There is a group G of order p9 such that B0(G) ̸= 0. In particular, k(G)
is not retract k-rational. Thus k(G) is not k-rational.
(2) (Bogomolov [Bo]) There is a group G of order p6 such that B0(G) ̸= 0. Thus k(G) is
not k-rational.

For p-groups of small order, we have the following result.

Theorem 1.6 (Chu and Kang [CK]). Let p be any prime number, G is a p-group of order
≤ p4 and of exponent e. If k is a field satisfying either (i) char k = p, or (ii) k contains a
primitive e-th root of unity, then k(G) is k-rational.

Because of the above Theorems 1.5 and 1.6, we may wonder what happens to non-abelian
p-groups of order p5.

Theorem 1.7 (Chu, Hu, Kang and Prokhorov [CHKP]). Let G be a group of order 32 and
of exponent e. If k is a field satisfying either (i) char k = 2, or (ii) k contains a primitive
e-th root of unity, then k(G) is k-rational. In particular, B0(G) = 0.

Working on p-groups, Bogomolov developed a lot of techniques and interesting results.
Here is one of his results.

Theorem 1.8. (1) [Bo, Lemma 4.11] If G is a p-group with B0(G) ̸= 0 and G/[G,G] ≃
Cp × Cp, then p ≥ 5 and |G| > p7.
(2) [Bo, Lemma 5.6; BMP, Corollary 2.11] If G is a p-group of order ≤ p5, then B0(G) = 0.

Because of part (2) of the above theorem, Bogomolov proposed to classify all the groups
G with |G| = p6 satisfying B0(G) ̸= 0 [Bo, page 479].

It came as a surprise that Moravec’s recent paper [Mo1] disproved the above Theorem
1.8.

Theorem 1.9 (Moravec [Mo1, Section 5]). If G is a group of order 243, then B0(G) ̸= 0 if
and only if G = G(243, i) with 28 ≤ i ≤ 30, where G(243, i) is the i-th group among groups
of order 243 in the database of GAP.

Moravec proves Theorem 1.9 by using computer calculations. No theoretic proof is
given. A file of the GAP functions and commands for computing B0(G) can be found at
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Moravec’s website www.fmf.uni-1j.si/~moravec/b0g.g. Recently, using this computer
package, Moravec was able to classify all groups G of order 55 and 75 such that B0(G) ̸= 0.

Before stating the main result of this paper, we recall the classification of p-groups of
order ≤ p6 and introduce the notion of isoclinism.

A list of groups of order 25 (resp. 35, 55, 75) can be found in the database of GAP.
However the classification of groups of order p5 dated back to Bagnera (1898), Bender
(1927), R. James (1980), etc. [Ba, Be, Ja], although some minor errors might occur in the
classification results finished before the computer-aided time. For example, in Bender’s
classification of groups of order 35, one group is missing, i.e. the group ∆10(2111)a2 which
was pointed by [Ja, page 613]. A beautiful formula for the total number of the groups of
order p5, for p ≥ 3, was found by Bagnera [Ba] as

2p+ 61 + gcd{4, p− 1}+ 2gcd{3, p− 1}.

Note that the above formula is correct only when p ≥ 5 (see the second paragraph of
Section 4).

On the other hand, groups of order 2n (n ≤ 6) were classified by M. Hall and Senior
[HaS]. There are 267 groups of order 26 in total. Groups of order 27 were classified by R.
James, Newman and O’Brien [JNOB].

Definition 1.10. Two p-groups G1 and G2 are called isoclinic if there exist group isomor-
phisms θ : G1/Z(G1) → G2/Z(G2) and ϕ : [G1, G1] → [G2, G2] such that ϕ([g, h]) = [g′, h′]
for any g, h ∈ G1 with g′ ∈ θ(gZ(G1)), h

′ ∈ θ(hZ(G1)) (note that Z(G) and [G,G] denote
the center and the commutator subgroup of the group G respectively).

For a prime number p and a fixed integer n, let Gn(p) be the set of all non-isomorphic
groups of order pn. In Gn(p) consider an equivalence relation: two groups G1 and G2 are
equivalent if and only if they are isoclinic. Each equivalence class of Gn(p) is called an
isoclinism family.

If p is an odd prime number, then there are precisely 10 isoclinism families for groups
of order p5; each family is denoted by Φi, 1 ≤ i ≤ 10 [Ja, pages 619–621]. As for groups of
order 64, there are 27 isoclinism families [JNOB, page 147].

The main result is the following theorem.

Theorem 1.11. Let p be any odd prime number, G be a group of order p5. Then B0(G) ̸= 0
if and only if G belongs to the isoclinism family Φ10. Each group G in the family Φ10 satisfies
the condition G/[G,G] ≃ Cp ×Cp. There are precisely 3 groups in this family if p = 3. For
p ≥ 5, the total number of non-isomorphic groups in this family is

1 + gcd{4, p− 1}+ gcd{3, p− 1}.

Note that, for p = 3, the isoclinism family Φ10 consists of the groups Φ10(2111)ar (where
r = 0, 1) and Φ10(5) [Ja, page 621], which are just the groups G(35, i) with 28 ≤ i ≤ 30 in
the GAP code numbers. This confirms the computation of Moravec [Mo1]. Similarly, when
p = 5, the isoclinism family Φ10 consists of the groups G(55, i) with 33 ≤ i ≤ 38; when
p = 7, the isoclinism family consists of the groups G(75, i) with 37 ≤ i ≤ 42. They agree
with Moravec’s computer results.

We use the computer package provided by Moravec to study groups of order 115. We find
that, for a group G of order 115, B0(G) ̸= 0 if and only if G ≃ G(115, i) with 39 ≤ i ≤ 42,
also confirming the above Theorem 1.11.

It may be interesting to record the computing time to determine B0(G) for all p-groups
of order p5 with p = 3, 5, 7, 11. When p = 3, 5, 7, it requires only 20 seconds, one hour and
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two days respectively. When p = 11, it requires more than one month by parallel computing
at four cores.

As a corollary of Theorem 1.11, we record the following result.

Theorem 1.12. Let n be a positive integer and k be a field with gcd{|G|, char k} = 1. If
26 | n or p5 | n for some odd prime number p, then there is a group G of order n such that
B0(G) ̸= 0. In particular, k(G) is not stably k-rational; when k is an infinite field, k(G) is
not even retract k-rational.

For completeness, we record the result for groups of order 26. Recall that there are 267
non-isomorphic groups of order 26 and 27 isoclinism families in total [JNOB].

Theorem 1.13 (Chu, Hu, Kang and Kunyavskii [CHKK]). Let G be a group of order 26.
(1) B0(G) ̸= 0 if and only if G belongs to the 16th isoclinism family, i.e. G = G(26, i) where
149 ≤ i ≤ 151, 170 ≤ i ≤ 172, 177 ≤ i ≤ 178, or i = 182.
(2) If B0(G) = 0 and k is an algebraically closed field with char k ̸= 2, then k(G) is rational
over k except possibly for groups G belonging to the 13rd isoclinism family, i.e. G = G(26, i)
with 241 ≤ i ≤ 245.

Finally we mention a recent result which supplements Moravec’s result in Theorem 1.9.

Theorem 1.14 (Chu, Hoshi, Hu and Kang [CHHK]). Let G be a group of order 35 and of
exponent e. If k is a field containing a primitive e-th root of unity and B0(G) = 0, then k(G)
is rational over k except possibly for groups G ∈ Φ7, i.e. G = G(35, i) with 56 ≤ i ≤ 60.

We explain briefly the idea of the proof of Theorem 1.11. Let G be a group of order
p5 where p is an odd prime number. For the proof of B0(G) = 0 when G belongs to the
isoclinism family Φ6, we use the 7-term cohomology exact sequence in [DHW]. We remark
that in [HKK] we prove not only B0(G) = 0, but also k(G) is retract k-rational or the k(G)’s
are k-isomorphic for the groups G belonging to the same isoclinism family. Moravec has
another proof showing that B0(G) = 0 when G is a group of order p5 not belonging to the
isoclinism family Φ10 [Mo2].

On the other hand, to show that B0(G) ̸= 0, we find suitable generators and relations
for G. It turns out that B0(G) ̸= 0 if some relations are satisfied. All the groups in the
isoclinism family Φ10 satisfy these relations. The proof relies on the 5-term exact sequence
of Hochschild and Serre [HS]

0 → H1(G/N,Q/Z) → H1(G,Q/Z) → H1(N,Q/Z)G → H2(G/N,Q/Z) ψ−→ H2(G,Q/Z)

where ψ is the inflation map. The crux of showing B0(G) ̸= 0 is to prove that the image of
ψ is non-zero and is contained in B0(G).
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