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In this talk, I explain the content of the joint paper [HKK] with Ming-chang Kang and
Boris E. Kunyavskii.

1 Introduction

Let k be any field and G be a finite group. Let G act on the rational function field k(z, : g €
G) by k-automorphisms so that g-xj, = x4, for any g, h € G. Denote by k(G) the fixed field
k(zy: g € G)Y. Noether’s problem asks whether k(G) is rational (= purely transcendental)
over k. It is related to the inverse Galois problem, to the existence of generic G-Galois
extensions over k, and to the existence of versal G-torsors over k-rational field extensions
[Sw, Sal, GMS, 33.1, p. 86]. Noether’s problem for abelian groups was studied by Swan,
Voskresenskii, Fndo, Miyata and Lenstra, etc. The reader is referred to Swan’s paper for a
survey of this problem [Sw].

On the other hand, just a handful of results about Noether’s problem are obtained when
the groups are not abelian. It is the case even when G is a p-group.

Before stating the results of Noether’s problem for non-abelian p-groups, we recall some
relevant definitions.

Definition 1.1. Let & C K be an extension of fields. K is rational over k (for short,
k-rational) if K is purely transcendental over k. K is stably k-rational if K(y1,...,ym) is
rational over k for some y1, . .., Y, such that yy, ..., y,, are algebraically independent over K.
When £ is an infinite field, K is said to be retract k-rational if there is a k-algebra A contained
in K such that (i) K is the quotient field of A, (ii) there exist a non-zero polynomial f €
k[X1,...,Xy] (where k[X1,...,X,] is the polynomial ring) and k-algebra homomorphisms
w: A = k[Xy,...,X,][1/f] and ¥: k[Xq,...,X,][1/f] — A satisfying ) o ¢ = 14. (See
[Sa2, Ka] for details.) It is not difficult to see that “k-rational” = “stably k-rational” =
“retract k-rational”.

Definition 1.2. Let £ C K be an extension of fields. The notion of the unramified Brauer
group of K over k, denoted by Br, ;(K) was introduced by Saltman [Sa3]. By definition,
Br, i (K) = (g Image{Br(R) — Br(K)} where Br(R) — Br(K) is the natural map of
Brauer groups and R runs over all the discrete valuation rings R such that kK C R C K and
K is the quotient field of R.

Lemma 1.3 (Saltman [Sa3, Sad|). If k is an infinite field and K is retract k-rational, then
the natural map Br(k) — Br, (K) is an isomorphism. In particular, if k is an algebraically
closed field and K is retract k-rational, then Br, j,(K) = 0.

Theorem 1.4 (Bogomolov, Saltman [Bo, Sa5, Theorem 12]). Let G be a finite group, k
be an algebraically closed field with gcd{|G|,chark} = 1. Let p denote the multiplicative
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subgroup of all roots of unity in k. Then Br, ;(k(G)) is isomorphic to the group Bo(G)
defined by
By(G) = ﬂKer{res cH?(G,p) — H*(A, 1)}
A
where A runs over all the bicyclic subgroups of G (a group A is called bicyclic if A is either
a cyclic group or a direct product of two cyclic groups).

Note that By(G) is a subgroup of H?(G, ) (where ged{|G|,chark} = 1). Since H*(G,
w) ~ Ho(G), which is the Schur multiplier of G (see [Kar]), we will call By(G) the Bogomolov
multiplier of G, following the convention in [Ku]. Because of Theorem 1.4 we will not distin-
guish By(G) and Bry, ;(k(G)) when k is algebraically closed and ged{|G|, char k} = 1. In this
situation, Bo(G) is canonically isomorphic to (4 Ker{res : H*(G,Q/Z) — H?*(A,Q/Z)},
i.e. we may replace the coefficient p by Q/Z in Theorem 1.4.

Using the unramified Brauer groups, Saltman and Bogomolov are able to establish
counter-examples to Noether’s problem for non-abelian p-groups.

Theorem 1.5. Let p be any prime number, k be any algebraically closed field with char k # p.
(1) (Saltman [Sa3]) There is a group G of order p° such that Bo(G) # 0. In particular, k(G)
is not retract k-rational. Thus k(G) is not k-rational.

(2) (Bogomolov [Bo]) There is a group G of order p® such that Bo(G) # 0. Thus k(G) is
not k-rational.

For p-groups of small order, we have the following result.

Theorem 1.6 (Chu and Kang [CK]). Let p be any prime number, G is a p-group of order
< p* and of exponent e. If k is a field satisfying either (i) chark = p, or (ii) k contains a
primitive e-th root of unity, then k(G) is k-rational.

Because of the above Theorems 1.5 and 1.6, we may wonder what happens to non-abelian
p-groups of order p°.

Theorem 1.7 (Chu, Hu, Kang and Prokhorov [CHKP]). Let G be a group of order 32 and
of exponent e. If k is a field satisfying either (i) chark = 2, or (ii) k contains a primitive
e-th root of unity, then k(QG) is k-rational. In particular, By(G) = 0.

Working on p-groups, Bogomolov developed a lot of techniques and interesting results.
Here is one of his results.

Theorem 1.8. (1) [Bo, Lemma 4.11] If G is a p-group with By(G) # 0 and G/|G, G| ~
Cp x Cp, then p > 5 and |G| > p'.
(2) [Bo, Lemma 5.6; BMP, Corollary 2.11] If G is a p-group of order < p°, then Bo(G) = 0.

Because of part (2) of the above theorem, Bogomolov proposed to classify all the groups
G with |G| = p® satisfying By(G) # 0 [Bo, page 479].

It came as a surprise that Moravec’s recent paper [Mol] disproved the above Theorem
1.8.

Theorem 1.9 (Moravec [Mol, Section 5]). If G is a group of order 243, then By(G) # 0 if
and only if G = G(243,1) with 28 < i < 30, where G(243,1) is the i-th group among groups
of order 243 in the database of GAP.

Moravec proves Theorem 1.9 by using computer calculations. No theoretic proof is
given. A file of the GAP functions and commands for computing By(G) can be found at
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Moravec’s website www.fmf.uni-1j.si/"moravec/b0g.g. Recently, using this computer
package, Moravec was able to classify all groups G of order 5° and 7° such that By(G) # 0.

Before stating the main result of this paper, we recall the classification of p-groups of
order < pb and introduce the notion of isoclinism.

A list of groups of order 2° (resp. 3°, 5°, 7°) can be found in the database of GAP.
However the classification of groups of order p® dated back to Bagnera (1898), Bender
(1927), R. James (1980), etc. [Ba, Be, Ja], although some minor errors might occur in the
classification results finished before the computer-aided time. For example, in Bender’s
classification of groups of order 3°, one group is missing, i.e. the group A1(2111)as which
was pointed by [Ja, page 613]. A beautiful formula for the total number of the groups of
order p°, for p > 3, was found by Bagnera [Ba] as

2p + 61 + ged{4,p — 1} + 2 ged{3,p — 1}.

Note that the above formula is correct only when p > 5 (see the second paragraph of
Section 4).

On the other hand, groups of order 2" (n < 6) were classified by M. Hall and Senior
[HaS]. There are 267 groups of order 2% in total. Groups of order 27 were classified by R.
James, Newman and O’Brien [JNOB].

Definition 1.10. Two p-groups G; and G4 are called isoclinic if there exist group isomor-
phisms 0: G1/Z(G1) — G2/Z(G2) and ¢: [G1,G1] — [G2,G2] such that ¢([g,h]) = [¢, V]
for any g,h € G; with ¢’ € 0(9Z(G1)), ' € 6(hZ(G1)) (note that Z(G) and [G,G] denote
the center and the commutator subgroup of the group G respectively).

For a prime number p and a fixed integer n, let G,,(p) be the set of all non-isomorphic
groups of order p™. In G, (p) consider an equivalence relation: two groups G and Gy are
equivalent if and only if they are isoclinic. Each equivalence class of G, (p) is called an
isoclinism family.

If p is an odd prime number, then there are precisely 10 isoclinism families for groups
of order p°; each family is denoted by ®;, 1 < i < 10 [Ja, pages 619-621]. As for groups of
order 64, there are 27 isoclinism families [JNOB, page 147].

The main result is the following theorem.

Theorem 1.11. Let p be any odd prime number, G be a group of order p®. Then By(G) # 0
if and only if G belongs to the isoclinism family ®19. Each group G in the family ®1¢ satisfies
the condition G/|G, G| ~ C, x Cy,. There are precisely 3 groups in this family if p = 3. For
p > 5, the total number of non-isomorphic groups in this family is

Note that, for p = 3, the isoclinism family ®1¢ consists of the groups ®19(2111)a, (where
r =0,1) and ®10(5) [Ja, page 621], which are just the groups G(3%,7) with 28 < < 30 in
the GAP code numbers. This confirms the computation of Moravec [Mol]. Similarly, when
p = 5, the isoclinism family ®;o consists of the groups G(5°,i) with 33 < i < 38; when
p = 7, the isoclinism family consists of the groups G(7°,4) with 37 < i < 42. They agree
with Moravec’s computer results.

We use the computer package provided by Moravec to study groups of order 11°. We find
that, for a group G of order 11°, Bo(G) # 0 if and only if G ~ G(11°,4) with 39 < i < 42,
also confirming the above Theorem 1.11.

It may be interesting to record the computing time to determine By(G) for all p-groups
of order p® with p = 3,5,7,11. When p = 3,5, 7, it requires only 20 seconds, one hour and
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two days respectively. When p = 11, it requires more than one month by parallel computing
at four cores.
As a corollary of Theorem 1.11, we record the following result.

Theorem 1.12. Let n be a positive integer and k be a field with ged{|G|,chark} = 1. If
26 | n or p° | n for some odd prime number p, then there is a group G of order n such that
By(G) # 0. In particular, k(G) is not stably k-rational; when k is an infinite field, k(G) is
not even retract k-rational.

For completeness, we record the result for groups of order 26. Recall that there are 267
non-isomorphic groups of order 26 and 27 isoclinism families in total [JNOB].

Theorem 1.13 (Chu, Hu, Kang and Kunyavskii [CHKK]). Let G be a group of order 2°.
(1) Bo(G) # 0 if and only if G belongs to the 16th isoclinism family, i.e. G = G(25,i) where
149 <7 <151, 170 <+ <172, 177 <1 < 178, or ¢ = 182.

(2) If Bo(G) =0 and k is an algebraically closed field with char k # 2, then k(G) is rational
over k except possibly for groups G belonging to the 13rd isoclinism family, i.e. G = G(25,1)
with 241 <4 < 245.

Finally we mention a recent result which supplements Moravec’s result in Theorem 1.9.

Theorem 1.14 (Chu, Hoshi, Hu and Kang [CHHK]). Let G be a group of order 3° and of
exponent e. If k is a field containing a primitive e-th root of unity and By(G) = 0, then k(G)
is rational over k except possibly for groups G € ®7, i.e. G = G(3°,i) with 56 < i < 60.

We explain briefly the idea of the proof of Theorem 1.11. Let G be a group of order
p° where p is an odd prime number. For the proof of By(G) = 0 when G belongs to the
isoclinism family ®g, we use the 7-term cohomology exact sequence in [DHW]. We remark
that in [HKK] we prove not only By(G) = 0, but also k(G) is retract k-rational or the k(G)’s
are k-isomorphic for the groups G belonging to the same isoclinism family. Moravec has
another proof showing that By(G) = 0 when G is a group of order p° not belonging to the
isoclinism family ®;¢ [Mo2].

On the other hand, to show that By(G) # 0, we find suitable generators and relations
for G. It turns out that Bo(G) # 0 if some relations are satisfied. All the groups in the
isoclinism family ®1g satisfy these relations. The proof relies on the 5-term exact sequence

of Hochschild and Serre [HS]

0~ H'(G/N,Q/Z) — H'(G,Q/Z) ~ H'(N,Q/2)¢ - HX(G/N,Q/7) % H*(G,Q/2)
where 1 is the inflation map. The crux of showing By(G) # 0 is to prove that the image of

1 is non-zero and is contained in By(G).
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