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1 Adams operation of Grothendieck groups

For regular noetherian separated scheme X of finite dimensional, Grothendieck [6] proved
that the Grothendieck group K0(X) of the exact category of vector bundles over schemes X
admits the Adams operations ψk : K0(X) → K0(X) (k = 1, 2, . . .) and the decomposition
to the eigen-spaces after tensoring with Q:⊕

r≥0

K0(X)
(r)
Q

∼= K0(X)Q,

where K0(X)(r) denotes the intersection of the kernel of the endmorphisms ψk −kr · id (k =
1, 2, . . .) and −Q means − ⊗Z Q. After, Hiller [7], Krazer [11], Soulé [15] and Riou [14]
proved that the higher K-groups Kn(X) (n ≥ 0) of separated schemes X admit the Adams
operations ψk : Kn(X) → Kn(X) (k = 1, 2, . . .).Let A be a commutative ring. Then the
Adams operation Ψk : K0(A) → K0(A) is defined by

ψk([M ]) = χ′([Kosk(M)•]) (k = 1, 2, . . .)

for any finitely generated projective A-moduleM , where χ′ is the secondary Euler character-
istic functor and Kosk(M)• is the Koszul complex of M . After Grothendieck [6], Hiller [7],
Krazer [11], Soulé [15], Grayson [5] and Riou [14] independently proved that the algebraic
higher K-groups Kn(X) (n ≥ 0) of separated schemes X admit the Adams operations
ψk : Kn(X) → Kn(X) (k = 1, 2, . . .). In particular, Grayson [5] gave combinatorial con-
structions Koszul complexes and the secondary Euler characteristic on the K-theory spaces
of the exact category of projective A-modules.

2 Preliminaries of stable ∞-categories and symmetric mono-
idal ∞-categories

2.1 The definition of ∞-categories

An ∞-category is a marked simplicial set which is a fibrant object with respect to Cartesian
model structure on the category of marked simplicial sets. We recall the definition of
Cartesian model structure and marked simplicial sets.

Let Set∆ denote the category of simplicial sets. Let ∆n ∈ Set∆ be the standard n-
simplex and Λn

i ⊂ ∆n be the sub-simplicial set obtained by deleting the interior and the
face opposite for the i-th vertex.

An inner fibration f : X → S of simplicial sets is a morphism of simplicial sets which
has the right lifting property with respect to all inclusion Λn

i → ∆n for any n ≥ 0 and
0 < i < n.
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Definition 2.1 ([12, Definition 2.4.1.3]). Let p : X → S be an inner fibration of simplicial
sets. An edge f : x→ y in X is p-Cartesian if the induced map

X/f → X/y ×S/p(y)
S/p(f)

is a trivial Kan fibration.

Definition 2.2 ([13, Definition 2.4.2.1]). A map p : X → S of simplicial sets is a Cartesian
fibration if p is an inner fibration and for every edge f : x→ y in S and every vertex ỹ of X
with p(ỹ) = y, there exists a p-Cartesian edge f̃ : x̃→ ỹ such that p(f̃) = f . We say that p
is a coCartesian fibration if p : Xop → Sop is a Cartesian fibration.

A marked simplicial set is a pair (X, E), where X is a simplicial set and E is a set of
edges of X1 which contains the set of all degenerate edges s0(X0). Here s0 : X0 → X1 is
the degeneracy map. The set E is called marked edges. A morphism f : (X, E) → (Y, E ′)
of marked simplicial sets is a map f : X → Y satisfying f(E) ⊂ E ′. Let Set+∆ denotes
the category of marked simplicial sets. We write S♯ = (S, S1) and S♭ = (S, s0(S0)). Let
p : X → S be a Cartesian fibration of simplicial sets. Then X♯ denotes the marked simplicial
set (X, E), where E is the set of p-Cartesian edges of X.

Let S be a simplicial set. Let X, Y be two marked simplicial set over S♯ and q :
Y → S be a Cartesian fibration. Let Map♭S(X, Y ) denote the underlying simplicial set Y X

and Map♯S(X, Y ) ⊂ Map♭S(X, Y ) denote the largest Kan complex. We define Cartesian
equivalences:

Definition 2.3 ([12, p. 155]). Let S be a simplicial set and p : X → Y a morphism in
(Set+∆)/S♯ . Then p is called a Cartesian equivalence if for every Cartesian fibration Z → S,
the induced map

Map♯S(Y,Z
♮) → Map♯S(X,Z

♮)

is a homotopy equivalence of Kan complexes.

We use the following Cartesian model structures [12, Proposition 3.1.3.7].

Theorem 2.4 ([12, Proposition 3.1.3.7, p. 157]). Let S be a simplicial set. There exists a
left proper combinatorial model structure on (Set+∆)/S♯ which described as follows:

(C) Cofibrations are monomorphisms.

(W) Weak equivalences in (Set+∆)/S♯ are Cartesian equivalences.

(F) Fibrations are those morphisms which have the right lifting property with respect to
every morphism satisfying both (C) and (W).

The above model structure on (Set+∆)/S♯ is called Cartesian model structure. An ∞-

category is a fibrant object of the Cartesian model category (Set+∆)/∆0, ♯ . This model struc-

ture of (Set+∆)/S♯ is simplicial and the simplicial model category (Set+∆)/S♯ admits mapping

objects given by Map♯S(X, Y ) (see [12, Corollary 3.1.4.4, p. 162]). Hence the Cartesian model
category (Set+∆)/S♯ has a symmetric monoidal structure determined by mapping object.

Definition 2.5. An ∞-category C is presentable if C satisfies the followings:

(i) There exists a regular cardinal κ such that C is (Cartesian) equivalent to a κ-Ind-
category of some small ∞-category. These ∞-categories are said to be accessible.

(ii) The ∞-category C admits small colimits.
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Note that any idempotent complete small∞-category is accessible [12, Corollary 5.4.3.6].
Furthermore any∞-category admits an idempotent completion [12, Proposition 5.1.4.2]. We
have the Adjoint functor theorem on ∞-categories:

Proposition 2.1 ([12, Corollary 5.5.2.9]). Let F : C → D be a functor between presentable
∞-categories. Fix a regular cardinal κ.
(1) The functor F admits a right adjoint if and only if it preserves all κ-small colimits.
(2) The functor F admits a left adjoint if and only if it preserves all κ-small limits and
κ-compact objects, and it is κ-continuous (We say that these functors are preserving small
limits and κ-accessible).

2.2 Stable ∞-categories and group complete ∞-categories

We recall the definition of the simplicial nerve of the category of simplicial categories:

Definition 2.6 ([12, Definition 1.1.5.3]). Let Cat∆ be the category of simplicial categories.
For the standard simplex ∆∗, the simplicial category C[∆∗] is defined by

C[∆n] =

{
∅ (j < i),

{I ⊂ [n] | 0, n ∈ I} (i ≤ j)

for each n ≥ 0. For general simplicial sets S, C[S] is defined as the colimit lim−→
∆∗→S

C[∆∗].

Then C[S] is the simplicial category.

We obtain a functor C : Set∆ → Cat∆. The functor N∆ : Cat∆ → Set∆ is a left adjoint
of C defined by

HomSet∆(∆
n, N∆(C)) = HomCat∆(C[∆

n], C)

for each n ≥ 0. The simplicial set N∆(C) is called the simplicial nerve of C. Joyal [9] showed
the existence of a Quillen equivalence

N∆ : Cat∆ ⇄ Set∆ : C.

Let Cat∞ denotes the simplicial nerve of the simplicial category of ∞-categories. The ∞-
category is called the ∞-category of ∞-categories. The ∞-category Cat∞ has a symmetric
monoidal structure determined by the symmetric monoidal structure on the Cartesian model
category (Set∆)/∆0, ♯ (see [12, Section 3.1.3, p. 154]).

A zero object of C is an object which is both initial and final. Let C be an ∞-category
which has an zero object 0. A diagram

X
f //

��

Y

g

��
0 //Z

is said to be a fiber sequence if it is a pull-back square, and a cofiber sequence if it is a
push-forward square. If the diagram is a fiber sequence, then X is said to be a fiber of g,
and it is a cofiber sequence if Z is a cofiber of f .

Definition 2.7 ([13, Definition 1.1.1.9]). Let C be an ∞-category. We say that C is a stable
∞-category if C satisfying the following properties:

(i) There exists a zero object 0 ∈ C such that it is both initial and final.
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(ii) Every morphism in C admits a fiber and a cofiber.

(iii) A diagram ∆1 ×∆1 → C is a fiber sequence if and only if a cofiber sequence.

Example 2.8. A pointed ∞-category is an∞-category with a zero object. Let Catex∞ denotes
the presentable ∞-category of stable ∞-categories and Cat∞, ∗ denotes the presentable ∞-
category of pointed ∞-categories. Since the ∞-category of stable ∞-categories admits all
small limits and the embedding functor Catex∞ → Cat∞, ∗ is accessible, it admits a left
adjoint by Proposition 2.1. Let Stab denote the left adjoint functor. The functor Stab is
called the stabilization. Let S be the ∞-category determined by the simplicial nerve of the
simplicial category of Kan complexes. This ∞-category is said to be the ∞-category of
spaces. Then Sp denote the stabilization of the pointed ∞-category S∗, and Sp is called the
stable ∞-category of spectra.

3 ∞-operads and symmetric monoidal ∞-categories

In this section, following [13], we explain the definitions of ∞-operads and symmetric
monoidal ∞-categories. In the last part of this section, we recall the definition of the
k-times symmetric product functor (k ≥ 0).

3.1 ∞-operads and symmetric monoidal ∞-categories

Definition 3.1 ([13, Notation 2.0.0.2]). Write ⟨n⟩ = {∗, 1, 2, . . . , n}. Let Fin∗ be the
category of finite pointed sets ⟨n⟩ with the base point ∗ and morphisms in Fin∗ are maps of
pointed sets.

A map f : ⟨m⟩ → ⟨n⟩ in Fin∗ is said to be innert if f−1(i) has exactly one element for
each 1 ≤ i ≤ n. A map f : ⟨m⟩ → ⟨n⟩ is said to be active if f−1(∗) = {∗}. For every pair of
integers 1 ≤ i ≤ n, let ρi : ⟨n⟩ → ⟨1⟩ denote the morphism given by the formula

ρi(j) =

{
1 (i = j)

∗ (i ̸= j).

Definition 3.2 ([13, Definition 2.1.1.10]). Let O⊗ be a simplicial set. An ∞-operad p :
O⊗ → N∆(Fin∗) is a coCartesian fibration satisfying the following conditions:

(i) For any innert morphism f : ⟨m⟩ → ⟨n⟩ and C ∈ O⊗
⟨n⟩, there exists a p-coCartesian

edge f̄ : C → C ′ such that f̄ is a lifting of f .

(ii) Let C ∈ O⊗
⟨m⟩ and C

′ ∈ O⊗
⟨n⟩ be two objects, f : ⟨m⟩ → ⟨n⟩ a morphism in Fin∗, and let

MapfO⊗(C, C
′) the connected components of the pull-back of f by MapO⊗(C, C ′) →

MapN∆(Fin∗)(⟨m⟩, ⟨n⟩). Choose p-coCartesian morphisms C ′ → C ′
i lying over the inert

morphisms ρi for 1 ≤ i ≤ n. Then the induced map

MapfO⊗(C, C
′) →

∏
1≤i≤n

Mapρ
i◦f

O⊗ (C, C ′
i)

is a homotopy equivalence.

(iii) For every finite collection of objects C1, . . . , Cn ∈ O⊗
⟨1⟩, there exists an object C ∈ O⊗

⟨n⟩
and a collection of p-coCartesian morphisms C → Ci covering ρ

i.
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Definition 3.3 ([13, Definition 2.1.2.3]). Let p : O⊗ → N∆(Fin∗) be an ∞-operad and
f : X → Y a morphism in O⊗. We say that f is innert if p(f) is innert and f is p-
coCartesian. We say that f is active if p(f) is active.

An O-monoidal ∞-category is a Cartesian fibration of ∞-operads p : C⊗ → O⊗. If
O⊗ = N∆(Fin∗), then we say that p : C⊗ → N∆(Fin∗) is a symmetric monoidal ∞-category.

Example 3.4. The stable ∞-category of spectra Sp has a canonical symmetric monoidal
structure determined by smash products on the category of pointed Kan complexes.

Definition 3.5 ([13, Definition 2.1.2.7]). Let O⊗ and O′⊗ be ∞-operads. A map f : O⊗ →
O′⊗ in (Set+∆)/N∆(Fin∗)♯ is an ∞-operad map if f carries inert morphisms in O⊗ to inert
morphisms in O′⊗.

Let AlgO(O′) denotes the full subcategory of FunN∆(Fin∗) (O⊗, O′⊗) spanned by ∞-
operad maps.

Example 3.6. Let p : C⊗ → N∆(Fin∗) be a symmetric monoidal ∞-category. Write
CAlg(C) = AlgN∆(Fin∗)(C). Objects of CAlg(C) are called commutative algebra objects of C.
In particular, objects of CAlg(Sp) is called E∞-rings.

4 The ∞-category of vector bundles over an E∞-rings

Let R be an E∞-ring and CAlg/R the ∞-category of E∞-rings over R. An object of CAlg/R
is called an R-algebra. Note that CAlg/R is pointed ∞-category with the base point idR :
R → R. The stabilization Stab(CAlg/R) is a stable presentable ∞-category, and it is
called R-modules [13, Corollary 8.3.4.14, p. 900]. Let ModR denotes the stable presentable
∞-category of R-modules. Let Mod⊗R denotes stable he stable presentable ∞-category of R-
modules with symmetric monoidal structure ⊗R with the unit object R. We assume that R
is compact: that is the functor Map(R, −) : ModR → Sp commutes with all small colimits.
Let PMod⊗R denotes the smallest full stable subcategory generated by R.

An object of PMod⊗R is given by taking iterated finite times finite colimits and direct
summands of objects R[i] (i ∈ Z). In this paper, we call an object of PMod⊗R a perfect
R-modules. Then the functor

PMod : CAlg ∋ R 7→ PMod⊗R ∈ CatPerf∞

Let VectnR denotes the maximal Kan complex generated by free R-modules of rank n ≥ 1.
The Kan complex VectnR is a sub-symmetric monoidal∞-category of PMod⊗R. The geometric
realization of VectnR is equivalent to the ∞-groupoid BGLn(R). Let BGL(R) is the colimit
of BGLn(R) and BGL+

n (R) is the group completion of the monoidal structure of BGL(R).
Then BGL+ is an E∞-ring by Gepner–Snaith [3].

Let K is the connective K-theory functor defined by Barwick [1]. Then we have the
composition functor K ◦ PMod : CAlg → Sp, and the following comparison theorem:

Theorem 4.1. The K-theory functors K ◦ PMod and BGL+ are equivalent as E∞-rings.

Furthermore, we have an Adams operation Ψk by a similar argument of Riou’s work [14]:

Theorem 4.2 ([14]). Let SH(Z) Q be the rationalized stable A1-homotopy category of
SpecZ defined by Voevodsky [17].

Then we have an isomorphism

EndSH(Z)Q(BGL+
Q)

∼= QZ.
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Under the isomorphism, we can define the Adams operation Ψk by Ψk = (kn)n∈Z ∈ QZ

for k ∈ Z − {0} (See [14]). Then we have Ψk ◦ Ψl = Ψkl = Ψl ◦ Ψk for any k, l ∈ Z − {0}
and Ψ1 = IdBGL.

Note that Ψk is bijective for any k ∈ Z−{0}. We can regard that Ψk is an action of the
multiplicative group Gm by the following sense:

AutSH(Z)Q(BGL+
Q) = Gm(EndSH(Z)Q(BGL+

Q)) = HomQ−alg

(
Q[t, t−1], EndSH(Z)Q(BGL+

Q)
)
.

Let A be a commutative ring. Then giving an action of Gm on X = SpecA is equivalent
to giving a Z-grading on A. :

Lemma 4.1. Let A be an E∞-ring flat over a base E∞-ring R. Then an action ϕ of Gm,R

on SpecA gives a grading A ≃
⊕

n∈ZA
(n), where A(n) is homotopy equalizer

A(n) → A
ϕ∗

⇒
kn·IdA

A[t, t−1].

We define the rationalized Adams operation Ψk (k ∈ Q− {0}) on the K-theory functor
KQ ◦ PMod by being an action of Gm. Then we get the followings:

Theorem 4.3. The rationalized Adams operation Ψk (k ∈ Q − {0}) on KQ ◦ PMod is
coincides with the Adams operation which gives the eigen-space decomposition with eigen-
value kn (n ∈ Z).
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Birkhäuser Boston, Boston, MA, 1990.

[17] V. Voevodsky, A1-homotopy theory, In: Proceedings of the International Congress of
Mathematicians, Vol. I (Berlin, 1998), Doc. Math. 1998, Extra Vol. I, 579–604,

[18] F. Waldhausen, Algebraic K-theory of spaces, In: Algebraic and geometric topology
(New Brunswick, N.J., 1983), 318–419, Lecture Notes in Math., 1126, Springer, Berlin,
1985.

23


