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1 Introduction

1.1

Let PSL2(Z) be the projective unimodular group which acts on the upper half plane H =
{τ = x+ iy|x ∈ R, y > 0 } by the linear fractional transformations. For an integer l ⩾ 2, let
Sl denote the space of all the holomorphic functions ϕ : H → C which satisfy the modular
transformation property

ϕ

(
aτ + b

cτ + d

)
= (cτ + d)2l ϕ(τ) for all

[
a b
c d

]
∈ PSL2(Z)

and are cuspidal at i∞. Thus, ϕ ∈ Sl has the Fourier expansion

ϕ(τ) =

∞∑
n=1

aϕ(n) q
n, q = exp(2πiτ)

with aϕ(n) the n-th Fourier coefficient of ϕ. For each n ∈ N := {1, 2, . . . }, the n-th Hecke
operator T (n), acting on the space Sl by

[T (n)ϕ] (τ) = n2l−1
∑

ad=n,0⩽b<d

ϕ

(
aτ + b

d

)
d−2l

is self-adjoint with respect to the Petersson inner-product on Sl

⟨ϕ1, ϕ2⟩ :=
∫
PSL2(Z)\H

ϕ1(τ)ϕ2(τ)y
2l−2 dx dy.

Moreover, the operators T (n) commute with each other. Thus, there exists a basis Bl of Sl
consisting of joint eigenfunctions of all the Hecke operators T (n) such that each ϕ ∈ Bl is
normalized in the sense that aϕ(1) = 1.

For

ϕ(τ) =

∞∑
n=1

aϕ(n) q
n ∈ Bl,

define its rescaled Fourier coefficients by

aϕ(n)
def
=

(4πn)−(l−1/2) Γ(2l)1/2

∥ϕ∥
aϕ(n), (n = 1, 2, . . . ).

Like the orthogonality relations for Dirichlet characters, the rescaled Fourier coefficients
aϕ(n) satisfy the asymptotic orthogonality relation, or Petersson’s formula:
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For any m,n ∈ N,

1

2l

∑
ϕ∈Bl

aϕ(n) aϕ(m) = δm,n +O

(
(mn)1/4+ϵ

√
l

)
(l → ∞).

Here we should remark that from the well-known dimension formula of Sl,

♯Bl =
l

6
+ o(1) (l → +∞).

Besides the aspect of orthogonality, the rescaled Fourier coefficients resemble to the Dirichlet
characters in the aspect of boundedness. While any Dirichlet character is obviously bounded
taking its values in the unit circle, the rescaled Fourier coefficients aϕ(n) are bounded only
asymptotically in the sense that for any ϵ > 0,

|aϕ(n)| ≪ (l n)ϵ, ϕ ∈ Bl, n ∈ N.

Despite its simple appearance, this is a deep result. For the n-aspect, we need Deligne’s
estimate |aϕ(n)| = O(n(2l−1)/2+ϵ), and for the l-aspect, we use the relation

∥ϕ∥2 (4π)−(2l−1) Γ(2l)−1 ≍ Ress=2lL(ϕ× ϕ̄, s)

proved by the Rankin-Selberg method and then imvoke Iwaniec’s estimate Ress=2lL(ϕ ×
ϕ̄, s) ≍ lϵ.

1.2

Let us recall the L-series L(ϕ, s) of ϕ ∈ Bl. In the classical normalization, it is given by the
Euler product

L(ϕ, s) :=
∞∑
n=1

aϕ(n)

ns
=

∏
p:primes

(1− aϕ(p) p
−s + p−2s+2l−1)−1, Re(s) ≫ 0.

Then, the completed L-function

Λ(ϕ, s) := ΓC(s)L(ϕ, s)

has a holomorphic continuation to C satisfying the functional equation

Λ(ϕ, 2l − s) = (−1)l Λ(ϕ, s).

In particular, the central value L(ϕ, l) is zero unless l is even, in which cases its positivity
is known. Suppose l is even. The central value L(ϕ, l) is of some interest. From Petersson’s
formula, by taking summation in n and by setting m = 1, we heuristically obtain the
asymptotic formula

♠ :
1

2l

∑
ϕ∈Bl

L (ϕ, l) |aϕ(1)|2 ∼ 1, (l → +∞)

for their average (= the first moment), which is true actually (cf. [1]). Since aϕ(1) ≍ lϵ

(∀ϵ > 0) and ♯Bl ≍ l, this is consistent with the Lindelöf hypothesis

(∀ϵ > 0) L(ϕ, l) = O(lϵ), ϕ ∈ Bl, l ∈ 2N
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in the weight aspect. At this point, to study the asymptotic for higher moments

1

2l

∑
ϕ∈Bl

|L (ϕ, l)|n |aϕ(1)|2, (n = 2, 3, . . . )

seems a natural direction for us to go. However, noting PSL(2,R) ∼= SO0(2, 1), we see
another possible way:
Regard PSL(2,R) as the first layer of groups SO0(2,m) (m = 1, 2, . . . ), go up the layer and
ask the question:

♡ Is there analogous formula for the first moment of higher degree Euler products for
holomorphic cusp forms on SO0(2,m) ?

In this note, we consider this problem and announce a SO(2,m) counterpart of the formula
♠ (enunciated in Theorem 6). We should note that in a recent preprint [2] a similar question
is raised for the spinor L-values of Siegel modular cusp forms on Sp2(Z); the authors proved
an asymptotic formula for a weighted average of L-values in the convergent range of the
Euler product, with the weight factor being constructed from the Bessel period of the cusp
forms. When viewed through the accidental isomorphism PGSp(2) ∼= SO(5), our result
should yield an asymptotic formula for the weighted average of the central spinor L-values
with the same weight factor as in [2].

Let us explain the structure of this article briefly. We heavily rely on the theory of
completed L-functions for orthogonal groups developed by Murase and Sugano; section 2
is a review of necessary facts from their theory. In section 3, we introduce notation of
holomorphic cusp forms and their L-functions on the type IV tube domain, recalling the
integral representation of the L-function due to Andrianov and Murase-Sugano. In section
4, we state our main result, whose proof is sketched in the final section.

This article is based on the conference talk which the author gave at the 6-th Fukuoka
Number Theory Symposium held at Kyushu University in August, 2011. The author thanks
the organizers of the conference, Professor Masanobu Kaneko, Professor Yasuhiro Kishi and
Professor Yasuro Gon, for having him as a speaker.

2 L-functions for orthogonal groups (Review of Murase-
Sugano’s work)

The basic references here are [3] and [4].
LetM ∼= Zn be a lattice, i.e., a free Z-module with Z-bilinear form (X,Y ) ∈ Z such that

the associated quadratic form Q[X] := (X,X) on the Q-vector space MQ is non-degenerate.
We suppose that

(i) M is even (i.e., Q[X] ∈ 2Z for all X ∈M).

(ii) M is maximal (i.e., if L is an even lattice containing M , then L =M).

Let OM be the orthogonal group scheme of M , i.e,

OM (R) = {g ∈ GL(MR)|Q[g X] = Q[X] for all X ∈M }

for any commutative ring R, where the scalar extension M ⊗Z R is denoted by MR.
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2.1 Local factors

Let p be a prime and ν the Witt index of the scalar extension MQp . Then, OM (Zp) is
a maximal compact subgroup of OM (Qp). Let K∗

M,p be the kernel of the reduction ho-
momorphism OM (Zp) → GL(M∨

Zp
/MZp); Ep denotes the quotient group OM (Zp)/K

∗
M,p.

We call K∗
M,p the discriminant subgroup of OM (Zp). Let HM,p be the Hecke algebra for

the pair (OM (Qp),K
∗
M,p) in the usual sense and define H+

M,p = {ϕ ∈ H|ϕ(uku−1) =
ϕ(k) for all u ∈ K∗

M,p }. By the theory of Satake isomorphism ([4]), the characters of the C-
algebra H+

M,p are parametrized by the set of Satake parameters (λ, χ), where λ = (λj)1⩽j⩽ν

is a ν-tuple of unramified quasicharacters of Q×
p and χ a class of finite dimensional irre-

ducible representations of Ep. For a character Ξ : H+
M,p → C with Satake parameter (λ, χ),

its local standard L-factor is defined by

Lp(Ξ; s) =
ν∏

j=1

{(1− λj(p) p
−s)(1− λj(p)

−1 p−s)}−1Aχ,p(s),

where Aχ,p(s) is the modification factor given by [4, Formula (1.18)]. We only note that if
MZp = M∨

Zp
then Ep is trivial and the factor Aχ,p(s) is 1; thus, Lp(Ξ; s) agrees with the

local standard L-factor pertaining to the embedding of the dual group

LSOM =

{
Sp(ν;C) (rkM = 2ν + 1)

SO(2ν) (rkM = 2ν)
↪→ GL(2ν,C).

2.2 Euler products

Let A be the adele ring of Q and Af the finite adele ring of Q. A general point of OM (R)
(resp. OM (Af )) is often denoted by g∞ (resp. gf ). When a point g of the adele group
OM (A) is given, the symbols g∞ and gf are used to denote its archimedean component and
its finite component, respectively; thus g = g∞ gf , g∞ ∈ OM (R) and gf ∈ OM (Af ).

Let
F : OM (Q)\OM (A)/

∏
p:primes

K∗
M,p → C

be an L2-automorphic form such that, for any prime p, there exists a character ΞF
p of H+

M,p

such that ∫
OM (Qp)

F (hgp)φ(gp) dgp = ΞF
p (φ)F (h) for all φ ∈ H+

M,p.

Define
L(F, s) :=

∏
p:primes

L(ΞF
p , s), Re(s) ≫ 0.

Actually, the infinite product converges absolutely on the half plane Re(s) > rk(M)/2.

2.2.1 The definite case

Suppose M is positive definite. Thus,

♯[OM (Q)\OM (Af )/
∏

p:primes

K∗
M,p] < +∞.
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Let f be a function on this double coset space satisfying a joint eigenequation for the action
of H+

M,p for all p. The Euler product L(f, s) is defined as above. Let us define the gamma
factor by

ΓM (s) =

[n/2]∏
j=1

ΓC(s− j + n/2)

{
d(M)s/2 n : even,

(2−1d(M))s/2 n : odd,

where n = rk(M).

Theorem 1 ([3], [4]). The completed L-function

Λ(f, s) = ΓM (s)L(f, s)

has a meromorphic continuation to C satisfying the functional equation Λ(f, 1− s) =
Λ(f, s). It is holomorphic away from the possible simple poles at

s =
n

2
− j (0 ⩽ j ⩽ n− 1).

Moreover, Λ(f, s) has a pole at s = n/2 if and only if f is a constant function.

3 Cusp forms on O(2,m) and their L-functions

We refer to [6] and [5].
Let m be an integer with m ⩾ 3 and L ∼= Zm+2 a lattice of signature (2−,m+) satisfying

(i) L is even and is maximal.

(ii) L admits the orthogonal splitting

L = Z ε1 ⊕ L1 ⊕ Z ε′1, L1 = Z ε0 ⊕ L0 ⊕ Z ε′0
with εj , ε

′
j isotropic vectors such that (εj , ε

′
j) = 1. Thus, L0 is positive definite.

Let
D̃ = {z ∈ L1,C|Q[Im(z)] < 0 }.

For (z, g) ∈ D̃×OL(R), define g⟨z⟩ ∈ D̃ and J(g, z) ∈ C∗ by the relation

g P (z) = J(g, z)P (g⟨z⟩),

where
P (z) = (−2−1Q[z]) ε1 + z+ ε′1 ∈ LC.

Choose a vector η−0 ∈ L1,R such that Q[η−0 ] = −1 and set z0 =
√
2η−0 /i, which belongs to

D̃. Let D be the connected component of D̃ containing z0. Then, the identity component
G of OL(R) acts on D transitively by the mapping (g, z) 7→ g⟨z⟩, and J(g, z) satisfies the
condition of automorphy factor :

J(gg′, z) = J(g, g′⟨z⟩) J(g′, z).

Let K∞ be the stabilizer of z0 in G; then, it is a maximal compact subgroup of G and

G/K∞ ∼= D, gK∞ 7→ g⟨z0⟩.

We fix a G-invariant Kähler structure on D by the 2-form 2−1
√
−1 ∂∂̄ Q[Im(z)]. Let dµD

be the G-invariant measure on D associated with the Kähler volume form, which in turn
yields a Haar measure dg∞ on OL(R) so that the quotient of dg∞ by the probability Haar
measure on K∞ corresponds to dµD on D ∼= G/K∞. We endow the adele group OL(A) =
OL(R)×OL(Af ) with the product measure dg = dg∞ ⊗ dgf , where dgf is the Haar measure
on the finite adele group OL(Af ) such that vol(K∗

L,f ) = 1, where K∗
L,f =

∏
pK

∗
L,p.
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3.1 Cusp forms on the adele group

Let l ∈ N. A function F : OL(A) → C is called a holomorphic cusp form of weight l if it
satisfies the conditions:

(i) F (γgkf ) = F (g) for all (γ, g, kf ) ∈ OL(Q)×OL(A)×K∗
L,f .

(ii) For any gf ∈ OL(Af ), the function

G ∋ g∞ → F (g∞gf ) J(g∞, z0)
l

factors through a holomorphic function on the domain G/K∞ ∼= D.

(iii) F (g) is bounded on OL(A).

Let Sl be the space of all the holomorphic cusp forms of weight l. We define the inner-
product of Sl by

⟨F1|F2⟩ :=
∫
OL(Q)\OL(A)

F1(g)F2(g) dg.

Then, it is known that Sl is a finite dimensional and

dimCSl ≍ lm, (l → +∞)

from the Hirzebruch-Mumford proportionality theorem.

3.2 Fourier expansion

Given gf ∈ OL(Af ), there exists a Z-lattice L1(gf ) ⊂ L1,Q such that for any F ∈ Sl,

F (gf g∞) =
∑

η∈L1(gf )∩
√
−1D

aF (gf ; η)Wη
l (g∞), g∞ ∈ G,

where aF (gf ; η) ∈ C are the Fourier coefficients and

Wη
l (g∞) = J(g∞, z0)

−l exp(2πi(η, g∞⟨z0⟩))

is the archimedean Whittaker function.

3.3 Averaged Fourier coefficients

From now on, we fix ξ ∈ L1,Q satisfying the following conditions.

(1) (signature condition) ξ ∈
√
−1D, in particular Q[ξ] < 0.

(2) (primitivity) ξ is a primitive vector in the dual lattice L∨
1 .

(3) (maximality) Lξ
1 := L1 ∩ ξ⊥ is maximal in Lξ

1,Q.

Set

OL1 = StabOL
(ε1, ε

′
1), Oξ

L = StabOL
(ξ), Oξ

L1
= Oξ

L ∩OL1 .

Since Lξ
1 is positive definite, the orthogonal group Oξ

L1
is anisotropic.

Let
K∗

Lξ
1,f

=
∏

p:primes

K∗
Lξ
1,p
,

and
f : Oξ

L1
(Q)\Oξ

L1
(Af )/K

∗
Lξ
1,f

→ C

be a joint eigenfunction of the Hecke algebras H+

Lξ
1,p

for all p.
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3.3.1

For F ∈ Sl with adelic Fourier coefficients aF (gf ; η), we call the following quantity the
Fourier-Bessel coefficient associated with (ξ, f) (which was introduced in [6] without being
called so).

afF (ξ) = µξ
−1

h∑
j=1

f(uj)

eξ(j)
aF (uj ; ξ),

where uj ∈ Oξ
L1
(Af ) (1 ⩽ j ⩽ h) is a complete set of representatives for the double coset

space Oξ
L1
(Q)\Oξ

L1
(Af )/K

∗
Lξ
1,f

and we set

eξ(j) = ♯[Oξ
L1
(Q) ∩ uj K∗

Lξ
1,f
u−1
j ], µξ =

h∑
j=1

(1/eξ(j)).

3.3.2

Another way to define afF (ξ) is as follows. For g∞ ∈ G, consider the integral∫
Oξ

L1
(Q)\Oξ

L1
(Af )

f(h) dh

∫
NL(Q)\NL(A)

F (nh g∞b
ξ
∞)ψξ(n) dn (3.1)

where PL = StabOL
(Qε1) the maximal parabolic subgroup of OL with the unipotent radical

NL and ψξ is the character of NL(A) determined by ξ. Then, (3.1), regarded as a function

in g∞, is proportional to Wξ
l (g∞). The proportionality constant is nothing but afF (ξ).

3.4 L-functions

Let (ξ, f) be as in 3.3. Let P ξ be the Q-parabolic subgroup of Oξ
L which stabilizes the

isotropic line Qε1 and N ξ the unipotent radical of P ξ. For (t, h) ∈ GL(1)×Oξ
L1
, let m(t; h)

be the element of Oξ
L such that

m(t; h) ε1 = t ε1, m(t; h) ε′1 = t−1 ε′1, m(t; h)|Lξ
1 = h.

Then, M ξ = {m(t; h)| t ∈ GL(1), h ∈ Oξ
L1

} is a Levi subgroup of P ξ. Fix an element

bξ∞ ∈ OL1(R)0 such that bξ∞ η−0 = |Q[ξ]|−1/2 ξ and define Kξ
∞ = [bξ∞K∞b

ξ
∞−1] ∩ Oξ

L(R).
Then, we have the Iwasawa decomposition Oξ

L(A) = P ξ(A)K∗
Lξ,f

Kξ
∞. For s ∈ C, let us

define a function f(s) on Oξ
L(A) by

f(s)(m(t; h)nk) = |t|s+ρ
A f(h), m(t; h)n ∈ P ξ(A), k ∈ K∗

Lξ,f K
ξ
∞

and consider the corresponding Eisenstein series on Oξ
L(A):

E
Oξ

L

P ξ (f, s; h) =
∑

γ∈P ξ(Q)\Oξ
L(Q)

f(s)(γ h), h ∈ Oξ
L(A), Re(s) > (m− 1)/2.

As a function in s, this has a meromorphic continuation to the whole complex plane in such

a way that, at its regular point s, the function E
Oξ

L

P ξ (f, s; h) in h is an automorphic form on

85



Oξ
L(A). A precise functional equation relating E

Oξ
L

P ξ (f, s; h) and E
Oξ

L

P ξ (f,−s; h) is proved in
[4].

Let F ∈ Sl be a joint eigenfunction of the Hecke algebras H+
L,p for all primes p. As we

explained in 2.1, we have the Euler product L(F, s). The complete L-function Λ(F, s) is
defined by

Λ(F, s) := ΓL(l, s)L(F, s).

with the gamma factor

ΓL(l, s) := ΓC(s−m/2 + l)

[m/2]∏
j=1

ΓC(s+m/2− j)×

{
d(L)s/2 m : even,

(2−1d(L))s/2 m : odd.

Theorem 2 ([6], [5]). Let F ∈ Sl and E
Oξ

L

P ξ (f, s;h) be the Eisenstein series on Oξ
L(A)

induced from f . Fix a Haar measure dh on Oξ
L(A). Then, for s with sufficiently large

Re(s),

Zf
F (s) :=

∫
Oξ

L(Q)\Oξ
L(A)

E
Oξ

L

P ξ (f, s− 1/2;h)F (h bξ∞) dh

= Cξ
l a

f
F (ξ)

Λ(F, s)

Λ(f, s+ 1/2)
×

{
1 m : odd,

ζ̂(2s) m : even.

where Cξ
l is a positive constant depending on the choice of a Haar measure dh on Oξ

L(A).
If afF (ξ) ̸= 0 for some (ξ, f), then Λ(F, s) has a meromorphic continuation to C satisfying
the functional equation Λ(F, 1 − s) = Λ(F, s) with possible poles only at s = m/2 − j
(0 ⩽ j ⩽ m− 1). In particular, L(F, s) is regular at s = 1/2.

4 Results

We keep the notation introduced in the previous section.

4.1 Polynomial bounds

For any ϵ > 0 and for any interval I ⊂ R, set

Tϵ,I = {s ∈ C|Re(s) ∈ I, |Im(s)| ⩾ ϵ }.

Recall that a meromorphic function ϕ(s) on C holomorphic away from the real axis is said
to be bounded in vertical strips of finite width if |ϕ(s)| is bounded on the set Tϵ,I for any
compact interval I and for any ϵ > 0.

Proposition 3 ([7]). Let ξ and f be as in 3.3, i.e., a simultaneous eigenform on

Oξ
L1
(Q)\Oξ

L1
(Af )/K

∗
Lξ
1,f

of the Hecke algebras H+

Lξ
1,p

for all primes p.

(1) The completed L-function Λ(f, s) is bounded in vertical strips of finite width.

(2) For any h ∈ Oξ
L1
(A), the normalized Eisenstein series Λ∗(f,−s)EOξ

L

P ξ (f, s; h) is bounded
in vertical strips of finite width.

Proposition 4 ([7]). Let f be as in Proposition 3. For any compact interval I and for any
ϵ > 0, there exists N > 0 such that the following estimation holds.

|L(f, s)| ≪ |Im(s)|N , s ∈ Tϵ,I .
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4.2 Rescaled Fourier-Bessel coefficients

Let (ξ, f) be as in 3.3. For F ∈ Sl, let us introduce the rescaled Fourier-Bessel coefficient
for (ξ, f) by

afF (ξ) :=
(4π
√

−2Q[ξ]2)l−ρ−1/2 Γ(2l − ρ)1/2 afF (ξ)

∥f∥ ∥F∥
,

where ρ = (m− 1)/2 and

∥f∥2 = µ−1
ξ

h∑
j=1

|f(uj)|2

eξ(j)
, ∥F∥2 =

∫
OL(Q)\OL(A)

|F (g)|2 dg.

The following is regarded as an analogue of the asymptotic orthogonality relation for
Fourier coefficients recalled in the introduction.

Theorem 5 ([8]). Let Bl be an orthonormal basis consisting of Hecke eigenforms in Sl.
Then,

lim
l→+∞

1

2 lm

∑
F∈Bl

|afF (ξ)|
2 = (2−1d(L))−1/2

(π
4

)−ρ
.

4.3 The Limit formula

We consider the limiting behavior as l → +∞ for the sum of the weighted central L-value
L(F, 1/2) |afF (ξ)|2 over F ∈ Bl and prove the following asymptotic formula, which is our
main theorem.

Theorem 6 ([9]). Let Bl be an orthonormal basis consisting of Hecke eigenforms in Sl.
For any κ > 0, we have

Γ(l)

4lm

∑
F∈Bl

L(F, 1/2) |afF (ξ)|
2 = cL(ξ, f) +O(l−κ), (l → +∞),

where

Γ(l) =
lm Γ(l − ρ)2 Γ(l − ρ− 1/2)

Γ(l) Γ(l − ρ/2) Γ(l − ρ/2 + 1/2)
,

cL(ξ, f) = (2−1d(L))−1/2
(π
4

)−ρ
×

{
CTs=1L(f, s), m : odd,

L′(f, 1)− dL(ξ)L(f, 1), m : even,

dL(ξ) =
−1

2
log(2−1d(Lξ

1)) +
(m
2

− 1
)
log(2π)−

m/2−1∑
j=1

Γ′

Γ

(
m+ 1

2
− j

)
with d(L) the Gram determinant of a Z-basis of L and L(f, s) the standard L-function of f
defined by Murase and Sugano.

In the theorem, CTs=1L(f, s) means the constant term of the Laurent expansion at
s = 1. Since Γ(l) = 1 +O(l−1), we obtain the following corollary.

Corollary 7.

lim
l→+∞

1

4lm

∑
F∈Bl

L(F, 1/2) |afF (ξ)|
2 = cL(ξ, f).
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We remark that L(f, s) has a possible simple pole at s = 1 when m is odd but is
holomorphic at s = 1 when m is even.

Corollary 8. Suppose that m is odd and that there exists (ξ, f) as above such that
CTs=1 L(f, s) ̸= 0. Then, there exist infinitely many linearly independent holomorphic Hecke

eigenforms F belonging to some Sl such that L(F, 1/2) ̸= 0 and afF (ξ) ̸= 0.

Questions and remarks. (1) Is the value L(F, 1/2) positive (or non-negative) for F ∈ Sl?
(cf. If OM is the split orthogonal group of odd size and π a generic cuspidal automorphic
representation of OM , the non-negativity of L(π, 1/2) is known by [Lapid and Rallis, Ann.
Math. 157 (2003), 891–917].)

(2) Is the value L(f, 1) non zero if m is odd ? If m = 3, 5, then Oξ
L1

= O(2), O(4) and
L(f, s) is (essentially) the Hecke’s L for a grossencharacter or the Jacquet-Langlands’ L for
an automorphic form on an inner form of GL(2), respectively. Thus, L(f, 1) ̸= 0 is known for
both. (cf. For generic cusp forms π, L(π, 1) ̸= 0 is widely proved by Shahidi (see [Gelbart
and Lapid, Amer. J. Math 128 (2006), 619–638] also).)

5 The proof of Theorem 6

For details, we refer to [9], whose contents are briefly reviewed in this section.

5.1 Ingredients of the proof of Theorem 6

There are three major ingredients:

• An integral representation of the standard L-functions by Murase and Sugano, which
was already recalled in 3.4.

• Construction of an adelic Poincaré series (see 5.5); as its seed, we use the “Shintani
functions” (at the archimedean place, explained in 5.2) and the “flat extension” of f
(at the finite places, explained in 5.3).

• To compute (f, ξ)-th Fourier-Bessel coefficient of the Poincaré series thus constructed,
in two ways (as explained in 5.6 and 5.7); this will give us a kind of summation
formula (5.1) which equats the weighted average of L-values with a certain geometric
expression arising from the double cosets P ξ(Q) γ PL(Q).

Besides these, we need the results in 4.1 and 4.2 for the proof. From now on, we fix ξ as in
3.3 and set ∆ = |Q[ξ]|.

5.2 The archimedean component (the Shintani function)

Define Φξ
l (s) : OL(R) → C by setting

Φξ
l (s; g∞) := J(g∞, z0)

−l 2−(s+ρ)/2

(
(ξ, g∞⟨z0⟩)
i∆1/2

)s+ρ−l

for g ∈ OL(R)+ and Φξ
l (s; g∞) = 0 for g∞ ∈ OL(R) − OL(R)+, where OL(R)+ is the

index two subgroup of OL(R) which stabilizes the connected component D. The function

Φξ
l (s; g∞) corresponds to an Oξ

L(R)×OL(R)-intertwining operator

T : Ind
Oξ

L(R)
P ξ(R) (| |

s)⊠Dl −→ C∞(OL(R))
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where Ind
Oξ

L(R)
P ξ(R) (| |

s) is the principal series representation of Oξ
L(R) ∼= O(m, 1) and Dl is the

holomorphic discrete series representation of weight l of OL(R) ∼= O(m, 2).

5.3 The non archimedean component

Define Φf,ξ
f (s) : OL(Af ) → C by

Φf,ξ
f (s; gf ) =

{
f(s)(hf ), if gf = hf kf ∈ Oξ

L(Af )K
∗
L,f ,

0, if gf ̸∈ Oξ
L(Af )K

∗
L,f ,

where f(s) is as in 3.4. The well-definedness is guaranteed by the relation Oξ
L(Af ) ∩K∗

L,f =
K∗

Lξ,f
([4, (2.11)]).

5.4 An adelic function

For g ∈ OL(A) and Re(z) > 0, define

Φ̂f,ξ
l,A(β, z; g) =

1

2πi

∫
(σ)

β(s)

z − s
D∗(s) Λ

∗(f,−s) Φξ
l (s; g∞)Φf,ξ

f (s; gf ) ds,

where (σ) denotes the contour Re(s) = σ such that 0 < σ < Re(z),

Λ∗(f, s) = Λ(f, s) ×

{
1 m : odd,

ζ̂(2s) m : even,

D∗(s) =
∏

0⩽j⩽m−1
j ̸=ρ

(s− ρ+ j)

and β(s) is an entire function on C satisfying that for any compact interval I ⊂ R and for
any N > 0, the estimation |β(s)| ≪ (1 + |Im(s)|)−N holds on the stripe Re(s) ∈ I.

5.5 An adelic Poincaré series

Let β be as in 5.4. For Re(z) ∈ (ρ, l − 3ρ− 1), define F̂ξ,f
l (β, z) : OL(Q)\OL(A) → C by

F̂ξ,f
l (β, z; g) =

∑
γ∈P ξ(Q)\OL(Q)

Φ̂f,ξ
l,A(β, z; γg), g ∈ OL(A).

Proposition 9. (i) The series converges absolutely if Re(z) ∈ (ρ, l − 3ρ− 1).

(ii) There exists a positive integer l0 (> 3ρ + 1) such that F̂ξ,f
l (β, z) ∈ Sl if l ⩾ l0 and

Re(z) ∈ (ρ, l − 3ρ − 1). For any g ∈ OL(A), the holomorphic function z 7→ F̂ξ,f
l (β, z; g)

defined on the stripe Re(z) ∈ (ρ, l − 3ρ − 1) has a holomorphic continuation to the whole
complex plane satisfying the functional equation

F̂ξ,f
l (β, z; g) + F̂ξ,f

l (β,−z; g) = −πm/2 Γ(l −m/2)

Γ(l)
β(z)D∗(z)C

ξ
l

∑
F∈Bl

Λ∗(f,−z)Zf
F̄
(z)F (g)

with the same constant Cξ
l occurred in Proposition 2.

(iii) The value at z = 0 of F̂ξ,f
l (β, z) with l ⩾ l0 is equals to

β(0)× −πm/2 Γ(l −m/2)

2 Γ(l)
Cξ
l

∑
F∈Bl

L(F̄ , 1/2) af
F̄
(ξ)F (g).
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(iv) For any compact set U ⊂ OL(A) and for any ϵ > 0,

|F̂ξ,f
l (β, z; g)| ≪ exp(|z|1+ϵ), z ∈ C, g ∈ U .

In particular, the entire function z 7→ F̂ξ,f
l (β, z; g) is of order 1.

5.6 Fourier-Bessel coefficients of the Poincare series (the spectral side)

Since the integration domain of (3.1) is compact, it follows from Proposition 9 that the

Fourier-Bessel coefficient af̄
F̂f,ξ
l (β,z)

(ξ) is holomorphic in z ∈ C. Its value at z = 0 is computed

as follows.

Proposition 10. For any l ⩾ l0,

CTz=0 a
f̄

F̂f,ξ
l (β,z)

(ξ) = β(0)× −πm Γ(l −m/2)

2 Γ(l)
Cξ
l

∑
F∈Bl

L(F̄ , 1/2) |aF̄f (ξ)|2

5.7 Fourier-Bessel coefficients of the Poincaré series (the geometric side)

Let w0, n̄(ε), n̄(ξ) ∈ OL(Q) be the elements defined by

w0 ε1 = −ε′1, w0(X) = X, w0 ε
′
1 = −ε1,

n̄(ε) ε1 = ε1 + ε, n̄(ε)X = X − (X, ε) e′1, n̄(ε) ε′1 = ε′1,

n̄(ξ) ε1 = ε1 + ξ − 2−1Q[ξ]ε′1, n̄(ξ)X = X − (X, ξ) ε′1, n̄(ξ) ε′1 = ε′1,

where X ∈ L1,Q is arbitrary and ε = Q[ξ] ε0.

Lemma 11. (i) The double coset space P ξ(Q)\OL(Q)/PL(Q) has 4 elements represented
by the rational points 1, w0, n̄(ε) and n̄(ξ).
(ii) For each ν0 ∈ {1, w0, n̄(ε), n̄(ξ)}, set

X(ν0) =


{m(1; δ)| δ ∈ Oξ

L1
(Q)\OL1(Q) } (ν0 ∈ {1, w0}),

{m(τ ; δ)| τ ∈ Q×, δ ∈ PL1(Q)\OL1(Q) } (ν0 = n̄(ε)),

{m(τ ; δ)| τ ∈ Q×, δ ∈ Oξ
L1
(Q)\OL1(Q) } (ν0 = n̄(ξ)),

where PL1 denotes the maximal parabolic subgroup of OL1 stabilizing the isotropic line Q ε0.
Then

P ξ(Q)\[P ξ(Q)ν0PL(Q)] =
⊔

µ∈X(ν0)

ν0µ · [NL,µ(Q)\NL(Q)]

with NL,µ(Q) = NL(Q) ∩ (ν0µ)
−1P ξ(Q) (ν0µ).

By this lemma and from the definition of the Fourier-Bessel coefficients given in 3.3.2,

af̄
F̂f,ξ
l (β,z)

(ξ) with Re(z) ∈ (ρ, l − 3ρ− 1) is written as a sum of 4 terms:

(Î1 + Îw0 + În̄(ε) + În̄(ξ))(l;β, z)

where Îν0(l;β, z) is

exp(2
√
2∆π)

∫
Gξ
1(Q)\Gξ

1(A)
f̄(h0) dh0

×
∑

µ∈X(ν0)

∫
Nµ(Q)\N(A)

Φ̂f,ξ
l (β, z; ν0 µnm(r; h0) b∞)ψξ(n)

−1 dn.
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Moreover, we write the integral Îw0(l; β, z) as the sum Îsingw0 (l; β, z) + Îregw0 (l; β, z) according
to the splitting X(w0) = {1} ∪ [X(w0)− {1}].

From definitions made so far, we have

af̄
F̂f,ξ
l (β,z)

(ξ) = Î1(l; β, z) + Îsingw0
(l; β, z) (5.1)

+ Îregw0
(l; β, z) + În̄(ε)(l; β, z) + În̄(ξ)(l; β, z)

for any l ⩾ l0 and Re(z) ∈ (ρ, l − 3ρ− 1).

5.7.1 The main term

On the strip Re(z) ∈ (ρ, l − 3ρ− 1), set

Y (l; β, z) = Î1(l;β, z) + Îsingw0
(l;β, z).

Proposition 12. Let l > 3ρ+ 1 be an integer.
(1) Let z ∈ C be such that Re(z) ∈ (ρ, l − 3ρ− 1). For any σ ∈ (ρ,Re(z)),

Y (l; β, z) =

{
1

2πi

∫
(σ)

β(s)

s− z
(ϕ(s) + ϕ(−s)) ds

}
∥f∥2

with

ϕ(s) =
(
√
8∆π)−s−ρ+l

Γ(−s− ρ+ l)
D∗(s) Λ

∗(f,−s).

(2) The function z 7→ Y (l;β, z) on Re(z) ∈ (ρ, l − 3ρ − 1) has a holomorphic continuation
to the whole complex plane satisfying the functional equation

Y (l;β, z) + Y (l;β,−z) = β(z) ∥f∥2 {ϕ(z) + ϕ(−z)}.

(3) The entire function Y (l;β, z) is of order 1.

5.8 An error term estimation

From now on, we assume our test function β(s) introduced in 5.4 satisfies that β(0) = 1 and
that there exists a constant a > π such that

|β(s)| ≪ exp(−a|Im(s)|)

holds for any compact interval I ⊂ R; for example, β(s) = exp(T s2) with T > 0 is a possible
choice. Let l0 (> 3ρ+ 1) be a sufficiently large integer as in Proposition 9. Our aim in this
section is to show that, in the right-hand side of (5.1), the last three terms combined have
a holomorphic continuation to C and its value at z = 0 is asymptotically negligible in the
limit l → ∞ compared with the first two terms combined. For our purpose, let us introduce
the function

R(l; β, z) =
−Γ(l − ρ)

(
√
8∆π)l−ρ

{
af̄
F̂f,ξ
l (β,z)

(ξ)− Î1(l; β, z)− Îsingw0
(l; β, z)

}
(5.2)

for l ⩾ l0 and Re(z) ∈ (ρ, l − 3ρ− 1). For convenience, we also set

Γ(l, s) =
πm/2 Γ(l − ρ) Γ(l − ρ− 1/2)

2 (
√
8∆π)l−ρ Γ(l)

Cξ
l

ΓL(l, s+ 1/2)

Γ
Lξ
1
(1− s)

,

where ΓL(l, s) is the common gamma factor for Λ(F, s) (see 3.4), Γ
Lξ
1
(s) the gamma factor

for Λ(f, s) (see 2.2.1) and Cξ
l the constant occurred in Theorem 2.
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Proposition 13. (1) The function z 7→ R(l; β, z) on Re(z) ∈ (ρ, l − 3ρ − 1) has a holo-
morphic extension to the whole complex plane. The entire function R(l; β, z) is of order
1.
(2) The sum R(l; β, z) +R(l; β,−z) equals

Γ(l, z) Γ
Lξ
1
(1− z)

∑
F∈Bl

|afF (ξ)|
2 L(F, z + 1/2) + ∥f∥2

×
(
(
√
8∆π)−z Γ(l − ρ)

Γ(l − ρ− z)
Λ(f, 1 + z) ζ̂(1 + 2z)ϵ +

(
√
8∆π)z Γ(l − ρ)

Γ(l − ρ+ z)
Λ(f, 1− z) ζ̂(1− 2z)ϵ

)
,

where ϵ denotes 0 or 1 according to m is odd or even, respectively.

Proof. This follows from Proposition 9 and Proposition 12.

Lemma 14. We have

R(l; β, 0)

=

Γ(l, 0)
∑
F∈Bl

|afF (ξ)|
2 L(F, 1/2)− CTs=0(Λ(f, 1− s) ζ̂(1− 2s)ϵ)

Γ
Lξ
1
(1)

 Γ
Lξ
1
(1)D∗(0)β(0)

and

Γ(l, 0) ∼
(π
4

)ρ
(2−1d(L))1/2 4−1 (4π

√
2∆)2ρ−2l+1 Γ(2l − ρ) l−m, l → +∞.

Proof. The first formula is inferred from Proposition 9 (iv) and Proposition 12. By a direct
computation, we have

Γ(l, 0) =
Γ(l − ρ)2 Γ(l − ρ− 1/2)

Γ(l) Γ(l − ρ/2) Γ(l − ρ/2 + 1/2)

(π
4

)ρ
(2−1d(L))1/2 4−1 (4π

√
2∆)2ρ−2l+1.

Since Γ(l + a)/Γ(l + b) ∼ la−b as l → +∞ for a, b ∈ R, the first factor on the right hand
side asymptotically equals l−m as l → +∞.

The next proposition is the cornerstone of our argument; from (5.1) and (5.2), its proof
is reduced to the individual estimation of the three terms Îregw0 (l; β, z), În̄(ε) and În̄(ξ)(l;β, z),
which is done by a rather complicated computation of archimedean integrals involving the
Bessel functions.

Proposition 15. Let σ ∈ (ρ, ρ+ 2). Then, for any q ∈ N,

|R(l; β, z)| ≪ l−q (5.3)

for any z ∈ σ + iR and for any sufficiently large l with the implied constant independent of
(z, l).

Lemma 16. Let σ > (m+ 1)/2. Then, there exists κ1 ∈ R such that

|Γ(l, z) Γ
Lξ
1
(1− z)

∑
F∈Bl

|afF (ξ)|
2 L(F, z + 1/2)| ≪ lκ1

for any z ∈ σ + iR and for any sufficiently large l with the implied constant independent of
(z, l).
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Proof. Since the argument z+1/2 with z ∈ σ+ iR lies in the convergent range of the Euler
product, the L-functions |L(F, z + 1/2)| are uniformly bounded in j and z ∈ σ + iR. From
Stirling’s formula, there is a polynomial bound

Γ(l, z) Γ
Lξ
1
(1− z)

Γ(l, 0) Γ
Lξ
1
(1)

= O(lκ1), z ∈ σ + iR, l ⩾ l0

with some exponent κ1. From Theorem 5, we obtain∑
F∈Bl

Γ(l, 0) |afF (ξ)|
2 = O(1), l → ∞.

Combining in all, we are done.

Lemma 17. Let A < B and C > 0. Let φ(l; z) (l ∈ N) be a family of entire functions in
z ∈ C such that

• |φ(l; z)| ⩽ C la for any z ∈ A+ iR and for any sufficiently large l.

• |φ(l; z)| ⩽ C lb for any z ∈ B + iR and for any sufficiently large l.

• For each l, φ(l; z) is of order 1.

Then,
|φ(l; z)| ⩽ C lReκ(z)

on the strip Re(z) ∈ [A,B] for any sufficiently large l, where κ(z) is the linear function in
z such that κ(A) = a, κ(B) = b.

Proof. This follows from the Phragmen-Lindelöf convexity principle applied to the function
l−κ(z) φ(l; z).

Corollary 18. For any q ∈ N, we have

|R(l; β, 0)| ≪ l−q

for sufficiently large l.

Proof. Fix σ ∈ (ρ, ρ + 2). From Proposition 13 (2) and Lemmas 15 and 16, together with
a polynomial bound of Γ(l − ρ)/Γ(l − ρ ± z) = O(lσ) on the line Re(z) = σ, we have the
estimation on the line Re(z) = −σ

|R(l; β, z)| ≪ lN , Re(z) = −σ, l ⩾ l0 (5.4)

with some N . Let q ∈ N. Thus, applying Lemma 17, from the estimations (5.3) and (5.4),
we have the interpolating estimate

|R(l; β, z)| ≪ l(N−q)/2

for any z ∈ iR and l ⩾ l0 with the implied constant independent on (z, l). This completes
the proof.
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Lemma 19.

Γ
Lξ
1
(1)−1CTs=0(L̂(f, 1− s) ζ̂(1− 2s)ϵ) =

{
CTs=1 L(f, 1), m ≡ 1 (mod 2),

L′(f, 1)− dL(ξ)L(f, 1), m ≡ 0 (mod 2),

where

dL(ξ) = Γ′
Lξ
1

(1)/Γ
Lξ
1
(1) =

−1

2
log(2−1d(Lξ

1)) +
m− 2

2
log(2π)−

m/2−1∑
j=1

ψ

(
m+ 1

2
− j

)
.

Proof. This is shown by a direct computation.

Now, Theorem 6 follows immediately from Lemma 14, Corollary 18 and Lemma 19.
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