Archimedean zeta integrals for the exterior square L-functions on GL_4

Taku Ishii (Seikei University)

Introduction

Let $\pi \cong \otimes'_v \pi_v$ be an automorphic cuspidal representation of $\operatorname{GL}_n(\mathbf{A}_{\mathbf{Q}})$. Let S be a finite set of places of \mathbf{Q} including archimedean place such that π_p $(p \notin S)$ is isomorphic to unramified principal series with Satake parameter diag $(\alpha_{1,p}, \ldots, \alpha_{n,p}) \in \operatorname{GL}_n(\mathbf{C})$. The local L-factors $L(s, \pi_p)$ and $L(s, \pi_p, \wedge^2)$ for the standard and the exterior L-functions are defined by

$$L(s,\pi_p) = \prod_{1 \le i \le n} (1 - \alpha_{i,v} p^{-s})^{-1}, \quad L(s,\pi_p,\wedge^2) = \prod_{1 \le i < j \le n} (1 - \alpha_{i,v} \alpha_{j,p} p^{-s})^{-1},$$

respectively. Let

$$L^{S}(s,\pi) = \prod_{p \notin S} L(s,\pi_{p}), \quad L^{S}(s,\pi,\wedge^{2}) = \prod_{p \notin S} L(s,\pi_{p},\wedge^{2})$$

be the partial *L*-functions. Jacquet and Shalika [6] found an integral representation of the exterior square *L*-functions and proved an analytic continuation of $L^{S}(s, \pi, \wedge^{2})$. Another integral representation was given by Bump and Friedberg [1]. This zeta integral contains two complex variables and makes us possible to study the standard and the exterior square *L*-functions simultaneously. In the papers [6] and [1], unramified computations are done, however, study of the local zeta integrals at archimedean and ramified places are not enough. Then their results are limited to the partial *L*-functions.

In this article we compute the archimedean local zeta integrals in [1] for GL₄. When π_{∞} is the class one principal series, Stade [12] carried out archimedean calculus. Our aim here is to extend Stade's result to non-spherical cases. Using our explicit formulas of the principal series Whittaker functions on GL₄ given in [3], we show that the archimedean zeta integral coincides with the product of two archimedean *L*-factors. As a consequence we can prove the analytic continuation and functional equations for the completed *L*-functions.

Contrary to the zeta integrals method, the Langlands-Shahidi method gives more satisfactory results. Kim [7] proved the analytic continuations and the functional equation for the completed exterior square L-functions. Miller and Schmid [8], [9] bring new approach for archimedean theory, and they also obtained global results for the completed L-functions.

1 Zeta integrals

In this section we recall the zeta integral introduced by Bump and Friedberg [1]. We note that they worked on GL_n , however, we only look at GL_4 . In this note the base field is \mathbf{Q} , and we denote by \mathbf{A} the adele ring of \mathbf{Q} .

1.1 global Whittaker functions

Let π be a cuspidal automorphic representation of $\operatorname{GL}_4(\mathbf{A})$ with the unitary central character ω . We denote by N the maximal unipotent subgroup of GL_4 consisting of upper triangular unipotent matrices. We fix a nontrivial additive character $\psi = \prod_v \psi_v : \mathbf{A}/\mathbf{Q} \to \mathbf{C}^{(1)}$ and extend it to a character $\psi_N = \prod_v \psi_{N,v}$ of N(\mathbf{A}) by $\psi_N(n) = \psi(n_{12})\psi(n_{23})\psi(n_{34})$ with $n = (n_{ij}) \in \operatorname{N}(\mathbf{A})$. For a cusp form $\varphi \in \pi$, we define the global Whittaker function W_{φ} attached to φ by

$$W_{\varphi}(g) = \int_{\mathcal{N}(\mathbf{Q}) \setminus \mathcal{N}(\mathbf{A})} \varphi(ng) \psi_{\mathcal{N}}(n^{-1}) \, dn, \quad (g \in \mathrm{GL}_4(\mathbf{A})),$$

which satisfies $W_{\varphi}(ng) = \psi_{N}(n)W_{\varphi}(g)$ for all $(n,g) \in N(\mathbf{A}) \times GL_{4}(\mathbf{A})$. The space $\mathcal{W}(\pi, \psi) = \{W_{\varphi} \mid \varphi \in \pi\}$, on which $GL_{4}(\mathbf{A})$ acts by right translation, is called Whittaker model of π . Since the cusp form φ is recovered from Whittaker function W_{φ} through Fourier expansion ([11])

$$\varphi(g) = \sum_{\gamma \in \mathcal{N}_3(\mathbf{Q}) \setminus \mathrm{GL}_3(\mathbf{Q})} W_{\varphi}\left(\begin{pmatrix} \gamma & 0\\ 0 & 1 \end{pmatrix} g\right)$$

(N₃ is the maximal unipotent subgroup of GL₃ consisting of upper triangular unipotent matrices), we have $W_{\varphi} \neq 0$ for $\varphi \neq 0$.

The notion of Whittaker model also makes sense over a local field. Let

 $\mathcal{W}(\psi_v) = \{ W : \operatorname{GL}_4(\mathbf{Q}_v) \to \mathbf{C} \text{ smooth } | W(ng) = \psi_{\mathrm{N},v}(n)W(g), \ \forall (n,g) \in \operatorname{N}(\mathbf{Q}_v) \times \operatorname{GL}_4(\mathbf{Q}_v) \}.$

For a smooth irreducible admissible representation π_v of $\operatorname{GL}_4(\mathbf{Q}_v)$, we call the image of π_v in $\mathcal{W}(\psi_v)$ the Whittaker model of π_v , and denote it by $\mathcal{W}(\pi_v, \psi_v)$. For a cuspidal automorphic representation $\pi \cong \otimes'_v \pi_v$, it is known that each π_v has a unique Whittaker model. Furthermore, if a cusp form φ is decomposable, that is, $\varphi \to \otimes_v \xi_v$ under the isomorphism $\pi \cong \otimes'_v \pi_v$, then the global Whittaker function can be factorized as

$$W_{\varphi}(g) = \prod_{v} W_{\xi_{v}}(g_{v}), \quad g = (g_{v}) \in \operatorname{GL}_{4}(\mathbf{A}),$$

where the local Whittaker function W_{ξ_v} is the image of $\xi_v \in \pi_v$ under $\pi_v \hookrightarrow \mathcal{W}(\psi_v)$.

1.2 Eisenstein series

We construct the Eisenstein series on $GL_2(\mathbf{A})$. Let Φ be a Schwartz-Bruhat function on \mathbf{A}^2 and $\eta : \mathbf{A}^{\times}/\mathbf{Q}^{\times} \to \mathbf{C}^{(1)}$ a unitary idele class character. We set

$$f(s,g,\Phi,\eta) = |\det g|_{\mathbf{A}}^s \int_{\mathbf{A}^{\times}} \Phi((0,1)zg) \, |z|_{\mathbf{A}}^{2s} \, \eta(z) \, dz, \quad s \in \mathbf{C}, \, g \in \mathrm{GL}_2(\mathbf{A})$$

This converges for $\operatorname{Re}(s) > 1/2$ and satisfies

$$f(s, \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} g, \Phi, \eta) = \left| \frac{a}{d} \right|^s \eta^{-1}(d) f(s, g, \Phi, \eta).$$

We define the Eisenstein series $E(s, q, \Phi, \eta)$ on $GL_2(\mathbf{A})$ by

$$E(s, g, \Phi, \eta) = \sum_{\gamma \in \mathcal{B}_2(\mathbf{Q}) \setminus \mathcal{GL}_2(\mathbf{Q})} f(s, \gamma g, \Phi, \eta),$$

which converges absolutely for $\operatorname{Re}(s) > 1$. Here B_2 is the standard Borel subgroup of GL_2 consisting of upper triangular matrices. Since this Eisenstein series can be written as the Mellin transform of theta function, the Poisson summation leads the following properties.

Proposition 1.1. The Eisenstein series $E(s, g, \Phi, \eta)$ has a meromorphic continuation to the whole s-plane, and satisfies the functional equation

$$E(s, g, \Phi, \eta) = E(1 - s, {}^{t}g^{-1}, \widehat{\Phi}, \eta^{-1}),$$

where $\widehat{\Phi}$ is the Fourier transform of $\Phi: \widehat{\Phi}(x_1, x_2) = \int_{\mathbf{A}^{\times}} \Phi(y_1, y_2) \psi(x_1y_1 + x_2y_2) dy_1 dy_2$. If η is not of form $|\cdot|^{\sqrt{-1}\sigma}$ ($\sigma \in \mathbf{R}$), then $E(s, g, \Phi, \eta)$ is entire. If $\eta = |\cdot|^{\sqrt{-1}\sigma}$ for some $\sigma \in \mathbf{R}$, then $E(s, g, \Phi, \eta)$ has possible simple poles at $s = -\sqrt{-1}\sigma$ and $s = 1 - \sqrt{-1}\sigma$.

1.3 global zeta integrals

Let \mathcal{Z} be the center of GL_4 . We define an embedding $J: GL_2 \times GL_2 \to GL_4$ by

$$\left(g_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}, g_2 = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}\right) \mapsto J(g_1, g_2) = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ c_1 & d_1 \\ c_2 & d_2 \end{pmatrix}.$$

For a cusp form φ on GL₄ and $s_1, s_2 \in \mathbf{C}$, we define the global zeta integral by

$$Z(s_1, s_2, \varphi, \Phi) = \int_{\mathcal{Z}(\mathbf{A})(\mathrm{GL}_2(\mathbf{Q}) \times \mathrm{GL}_2(\mathbf{Q})) \setminus \mathrm{GL}_2(\mathbf{A}) \times \mathrm{GL}_2(\mathbf{A})} \varphi(J(g_1, g_2))$$
$$\times E(s_2, g_2, \Phi, \omega) \left| \frac{\det g_1}{\det g_2} \right|^{s_1 - 1/2} dg_1 dg_2.$$

Then the substitution $(g_1, g_2) \rightarrow ({}^tg_1^{-1}, {}^tg_2^{-1})$ implies

$$Z(s_1, s_2, \varphi, \Phi) = Z(1 - s_1, 1 - s_2, \widetilde{\varphi}, \widehat{\Phi}), \qquad (1.1)$$

where $\tilde{\varphi}(g) = \varphi({}^tg^{-1})$, and $\tilde{\varphi} \in \tilde{\pi}$. Here $\tilde{\pi}$ is the contragredient representation of π and has the central character ω^{-1} . Using the Fourier expansion of φ , we can reach the basic identity ([1, Theorem 2]):

$$\begin{aligned} Z(s_1, s_2, \varphi, \Phi) &= \int_{\mathcal{Z}(\mathbf{A})(\mathrm{N}_2(\mathbf{A}) \times \mathrm{N}_2(\mathbf{A})) \setminus \mathrm{GL}_2(\mathbf{A}) \times \mathrm{GL}_2(\mathbf{A})} W_{\varphi}(J(g_1, g_2)) \\ &\times f(s_2, g_2, \Phi, \omega) \left| \frac{\det g_1}{\det g_2} \right|^{s_1 - 1/2} dg_1 dg_2 \\ &= \int_{\mathrm{N}_2(\mathbf{A}) \setminus \mathrm{GL}_2(\mathbf{A})} \int_{\mathrm{N}_2(\mathbf{A}) \setminus \mathrm{GL}_2(\mathbf{A})} W_{\varphi}(J(g_1, g_2)) \\ &\times \Phi((0, 1)g_2) \left| \det g_1 \right|^{s_1 - 1/2} \left| \det g_2 \right|^{-s_1 + s_2 + 1/2} dg_1 dg_2. \end{aligned}$$

Therefore, if φ is decomposable, then we have

$$Z(s_1, s_2, \varphi, \Phi) = \prod_v Z_v(s_1, s_2, W_v, \Phi_v).$$

Here $Z_v(s_1, s_2, W_v, \Phi_v)$ is the local zeta integral given by

$$Z_{v}(s_{1}, s_{2}, W_{v}, \Phi_{v}) = \int_{N_{2}(\mathbf{Q}_{v}) \setminus \mathrm{GL}_{2}(\mathbf{Q}_{v})} \int_{N_{2}(\mathbf{Q}_{v}) \setminus \mathrm{GL}_{2}(\mathbf{Q}_{v})} W_{v}(J(g_{1}, g_{2})) \\ \times \Phi_{v}((0, 1)g_{2}) |\det g_{1}|^{s_{1}-1/2} |\det g_{2}|^{-s_{1}+s_{2}+1/2} dg_{1} dg_{2},$$

where $N_2(\mathbf{R}) = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \middle| n \in \mathbf{R} \right\}.$

1.4 Unramified computation

Let π_p be the unramified principal series representation of $GL_4(\mathbf{Q}_p)$. Bump and Friedberg performed the unramified computation:

Proposition 1.2 ([1, Theorem 3]). Let $p < \infty$ be an unramified place. For an unramified Whittaker function W_p^o and $\Phi_p^o = \operatorname{ch}_{\mathbf{Z}_p \oplus \mathbf{Z}_p}$ (characteristic function of $\mathbf{Z}_p \bigoplus \mathbf{Z}_p$), we have

$$Z_p(s_1, s_2, W_p^o, \Phi_p^o) = L(s_1, \pi_p)L(s_2, \pi_p, \wedge^2).$$

2 Representation theory of $GL_4(\mathbf{R})$

2.1 Lie groups and algebras

Let $G = GL_4(\mathbf{R})$ and fix a maximal compact subgroup K = O(4) of G. Let $N = N(\mathbf{R})$ and

$$A = \{ \operatorname{diag}(a_1, a_2, a_3, a_4) \mid a_i > 0 \text{ for } 1 \le i \le 4 \},\$$

Then we have the Iwasawa decomposition G = NAK. For our later use, we introduce new coordinates on A by

$$y = a[y_1, y_2, y_3, y_4] = \operatorname{diag}(y_1y_2y_3y_4, y_2y_3y_4, y_3y_4, y_4),$$

with $y_i > 0$ $(1 \le i \le 4)$.

We denote by $\mathfrak{g}, \mathfrak{k}, \mathfrak{n}$ and \mathfrak{a} the Lie algebras of G, K, N and A, respectively. Let \mathfrak{p} be the orthogonal complement of \mathfrak{k} in \mathfrak{g} with respect to the Killing form: $\mathfrak{p} = \{X \in \mathfrak{g} = \mathfrak{gl}(n, \mathbf{R}) \mid X = {}^{t}X\}$. We denote by $\mathfrak{p}^{0} = \{X \in \mathfrak{p} \mid \operatorname{tr}(X) = 0\}$. Let E_{ij} be the matrix unit of size 4 with 1 at the (i, j)-th entry and 0 at the other entries. For $1 \leq i, j \leq n$ we set

$$K_{ij} = E_{ij} - E_{ji}, \quad X_{ij} = \begin{cases} E_{ij} + E_{ji} & \text{if } i \neq j, \\ 2E_{ii} - (1/2)E_4 & \text{if } i = j, \end{cases}$$

where E_4 is the unit matrix of size 4. Then we have

$$\mathfrak{k} = \bigoplus_{1 \le i < j \le n} \mathbf{R} K_{ij}, \quad \mathfrak{p}^0 = \bigoplus_{1 \le i \le j \le n} \mathbf{R} X_{ij}.$$

For a Lie algebra \mathfrak{l} , we denote by $\mathfrak{l}_{\mathbb{C}} = \mathfrak{l} \otimes_{\mathbb{R}} \mathbb{C}$ the complexification of \mathfrak{l} . Let f be a smooth function on G. We denote by R the right regular action of G, and also denote by R the action of \mathfrak{l} determined by the differential of R:

$$R(X)f(g) = \frac{d}{dt}\Big|_{t=0} f(g\exp(tX)), \quad X \in \mathfrak{l}, \ g \in G.$$

This action of \mathfrak{l} can be extended the that of the universal enveloping algebra $U(\mathfrak{l}_{\mathbf{C}})$ of $\mathfrak{l}_{\mathbf{C}}$.

2.2 Representations of K

We introduce finite dimensional representations (τ_i, V_i) (i = 0, 1, 2) of K and their basis as follows:

- τ_0 : trivial representation on $V_0 = \mathbf{C} = \mathbf{C} v_0$;
- τ_1 : the standard representations on $V_1 = \mathbf{C}^4 = \bigoplus_{1 \le i \le 4} \mathbf{C} v_i;$
- τ_2 : the exterior representation of τ_1 on $V_2 = \wedge \mathbf{C}^4 = \bigoplus_{1 \le i \le j \le 4} \mathbf{C} v_{ij}$,

where $v_0 = 1$, v_i $(1 \le i \le 4)$ is the *i*-th standard basis of \mathbb{C}^4 , and $v_{ij} = v_i \wedge v_j$. The \mathfrak{k} -actions on V_1 and V_2 are given by

$$d\tau_1(K_{ij})v_p = \delta_{jp}v_i - \delta_{ip}v_j,$$

$$d\tau_2(K_{ij})v_{pq} = \delta_{jp}v_{iq} + \delta_{jq}v_{pi} - \delta_{ip}v_{jq} - \delta_{iq}v_{pj}.$$

We note that τ_2 is direct sum of two (3-dimensional) irreducible representations.

For $\delta \in \mathbb{Z}/2\mathbb{Z}$, let $\tau_{(i,\delta)}$ be a representation of K on V_i given by

$$\tau_{(i,\delta)}(k) = \det(k)^{\delta} \tau_i(k), \quad k \in K.$$

2.3 Principal series representations

Let M be the centralizer of A in K:

$$M = \{m = \text{diag}(m_1, m_2, m_3, m_4) \mid m_i \in \{\pm 1\} \ (1 \le i \le 4)\},\$$

For a subset I of $\{1, 2, 3, 4\}$ we define a representation σ_I of M by

$$\sigma_I(\operatorname{diag}(m_1, m_2, m_3, m_4)) = \prod_{1 \le i \le 4} m_i^{\delta_i},$$

where $\delta_i \equiv \delta_{i,I}$ $(1 \le i \le 4)$ is given by

$$\delta_i \equiv \delta_{i,I} = \begin{cases} 0 & \text{if } i \notin I, \\ 1 & \text{if } i \in I. \end{cases}$$

A linear form $\nu \in \text{Hom}_{\mathbf{R}}(\mathfrak{a}, \mathbf{C})$ is identified with a tuple of complex numbers $(\nu_1, \nu_2, \nu_3, \nu_4)$ by $\nu(E_{ii}) = \nu_i$. We define a character e^{ν} of A by

$$e^{\nu}(a) = \prod_{1 \le i \le 4} a_i^{\nu_i}, \quad a = \text{diag}(a_1, a_2, a_3, a_4) \in A$$

Let ρ be the half sum of the standard positive roots of $(\mathfrak{g}, \mathfrak{a})$. Then we have $e^{\rho}(a) = a_1^3 a_2^2 a_3$. Under the data above, we call the induced representation

$$\pi_{I,\nu} = \operatorname{Ind}_{MAN}^G(\sigma_I \otimes e^{\nu + \rho} \otimes 1_N)$$

the principal series representation of G. The representation space $H_{I,\nu}$ is

$$H_{I,\nu} = \{ f \in L^2(K) \mid f(mk) = \sigma_I(m)f(k) \text{ for } (m,k) \in M \times K \}$$

on which G acts by

$$(\pi_{I,\nu}(g))f(k) = a(kg)^{\nu+\rho}f(\kappa(kg)).$$

Here $g = n(g)a(g)\kappa(g)$ $(n(g) \in N, a(g) \in A, \kappa(g) \in K)$ is the Iwasawa decomposition of $g \in G$. We call the cardinality h of the set I the helicity of the principal series $\pi_{I,\nu}$, and denote by $\tilde{h} = \min(h, 4 - h)$. When ν is in a general position, it is known that $\pi_{I,\nu}$ is irreducible, and we assume that $\pi_{I,\nu}$ is irreducible throughout this paper.

Lemma 2.1. The minimal K-type of $\pi_{I,\nu}$ is $\tau_{(\tilde{h},\delta)}$ where $\delta = 0$ for h = 0, 1, 2, and $\delta = 1$ for h = 3, 4.

2.4 Whittaker functions

Let ψ_{∞}^c $(c \in \mathbf{R})$ be the unitary character of \mathbf{R} defined by $\psi_{\infty}^c(x) = \exp(2\pi\sqrt{-1}cx)$. For $c = (c_1, c_2, c_3) \in \mathbf{R}^3$, we define the character ψ_{∞}^c of N by

$$\psi_{\infty}^{c}(n) := \psi^{c_{1}}(n_{12})\psi^{c_{2}}(n_{23})\psi^{c_{3}}(n_{34}) = \exp\{2\pi\sqrt{-1}(c_{1}n_{12} + c_{2}n_{23} + c_{3}n_{34})\},\$$

for $n = (n_{ij}) \in N$. A nondegenerate unitary character of N is of the form ψ_{∞}^c for some $c \in (\mathbf{R}^{\times})^3$. We use the convention $\psi_{\infty}^{(c)} = \psi_{\infty}^{(c,c,c)}$ for $c \in \mathbf{R}$.

For $c \in (\mathbf{R}^{\times})^3$, we introduce the space

$$C^{\infty}(N\backslash G;\psi_{\infty}^{c}) = \{ f \in C^{\infty}(G) \mid f(ng) = \psi_{\infty}^{c}(n)f(g), (n,g) \in N \times G \},\$$

on which G acts by right translation. For the principal series $(\pi_{I,\nu}, H_{I,\nu})$ of G we denote by $H_{I,\nu}^{\infty}$ the subspace of $H_{I,\nu}$ consisting of smooth functions. We call the space

$$\mathcal{W}(\pi_{I,\nu},\psi_{\infty}^{c}) = \{\Phi(f) \mid f \in H_{I,\nu}^{\infty}, \Phi \in \operatorname{Hom}_{G}(H_{I,\nu}^{\infty}, C^{\infty}(N \setminus G; \psi_{\infty}^{c}))\}$$

Whittaker model of $\pi_{I,\nu}$, and a function in this space Whittaker function for $\pi_{I,\nu}$. According to the results of Shalika, Kostant and Wallach, the dimension of the space of $\mathcal{W}(\pi_{I,\nu}, \psi_{\infty}^c)$ is one. To describe Whittaker functions as functions on G, we take a K-type (τ, V_{τ}) of $\pi_{I,\nu}$, and a vector $v \in V_{\tau}$. For the unique (up to constant) intertwining operator $\Phi \in$ $\operatorname{Hom}_G(H_{I,\nu}^{\infty}, C^{\infty}(N \setminus G; \psi_{\infty}^c))$), the function

$$W(v;g) := \Phi(v) \in \mathcal{W}(\pi_{I,\nu}, \psi_{\infty}^c)$$

satisfies the relation

$$W(v; ngk) = \psi_{\infty}^{c}(n)W(\tau(k)v; g), \quad (n, g, k) \in N \times G \times K.$$

Because of the Iwasawa decomposition, W(v;g) is determined by W(v;a(g)), which we call the radial part of W(v;g).

Remark 1. For $W(v;g) \in \mathcal{W}(\pi_{I,\nu}, \psi_{\infty}^{(1)})$ $(v \in V_{\tau})$, if we set

 $W^{c}(v;g) = W(v; \operatorname{diag}(c_{1}c_{2}c_{3}, c_{2}c_{3}, c_{3}, 1)g),$

then we have $W^c(v;g) \in \mathcal{W}(\pi_{I,\nu},\psi_{\infty}^c)$, and

$$W^{c}(v; a[y_{1}, y_{2}, y_{3}, y_{4}]) = W(\tau(m_{c})v; a[|c_{1}|y_{1}, |c_{2}|y_{2}, |c_{3}|y_{3}, y_{4}])$$

with $m_c = \operatorname{diag}(\operatorname{sgn}(c_1c_2c_3), \operatorname{sgn}(c_2c_3), \operatorname{sgn}(c_3), 1) \in M$.

2.5 *L*- and ε - factors

We recall the definition of the archimedean L- and ε - factors via the Langlands parametrizations. For an irreducible admissible representation π_{∞} of $\text{GL}_4(\mathbf{R})$, we denote by $L(s, \pi_{\infty})$ and $L(s, \pi_{\infty}, \wedge^2)$ the *L*-factors of the standard and the exterior square *L*-functions, respectively. We denote by $\varepsilon(s, \pi_{\infty}, \psi_{\infty}^1)$ and $\varepsilon(s, \pi_{\infty}, \wedge^2, \psi_{\infty}^1)$ the corresponding ε -factors. When $\pi_{\infty} = \pi_{I,\nu}$, the archimedean *L*- and ε - factors are defined as follows:

$$L(s,\pi_{\infty}) = \prod_{1 \le i \le 4} \Gamma_{\mathbf{R}}(s+\nu_i+\delta_i), \qquad \qquad \varepsilon(s,\pi_{\infty},\psi_{\infty}^1) = \sqrt{-1}^h;$$
$$L(s,\pi_{\infty},\wedge^2) = \prod_{1 \le i < j \le 4} \Gamma_{\mathbf{R}}(s+\nu_i+\nu_j+\delta_{ij}), \qquad \varepsilon(s,\pi_{\infty},\wedge^2,\psi_{\infty}^1) = \sqrt{-1}^{h(n-h)}$$

where we denote by $\Gamma_{\mathbf{R}}(s) = \pi^{-s/2} \Gamma(s/2)$, and $\delta_{ij} \in \{0, 1\}$ is defined by $\delta_{ij} \equiv \delta_i + \delta_j \pmod{2}$.

3 Evaluation of archimedean zeta integrals

3.1 Explicit formulas for Whittaker functions

We first review the Mellin-Barnes type integral representations of the radial parts W(v; y) $(y \in A)$ of the Whittaker functions at the minimal K-types of $\pi_{I,\nu}$. In [5] (n: general, h = 0), [3] $(n = 4, 0 \le h \le 4)$ and [4] (n, h: general), we expressed Whittaker functions on $SL_n(\mathbf{R})$ for the principal series of helicity h, in terms of Whittaker functions on $SL_{n-1}(\mathbf{R})$ for the principal series of helicity h - 1. We denote by

$$I = \{i_1, \dots, i_h\} \ (i_1 < \dots < i_h), \quad I' = \{1, 2, 3, 4\} \setminus I = \{i'_1, \dots, i'_{4-h}\} \ (i'_1 < \dots < i'_{4-h}).$$

Theorem 3.1 ([5], [3], [4]). Let $\tilde{h} = \min(h, 4-h)$ and $(\tau_{(\tilde{h},\delta)}, V_{\tilde{h}})$ be the minimal K-type of the irreducible principal series $\pi_{I,\nu}$ of helicity $h = \sharp(I)$. For each vector $v \in V_{\tilde{h}}$, there exists the Whittaker function $W_{\nu}^{c}(v; g)$ corresponding to v, whose radial part is given by

$$W_{\nu}^{c}(v;y) = \frac{y_{1}^{3/2}y_{2}^{2}y_{3}^{3/2}y_{4}^{|\nu|}}{(2\pi\sqrt{-1})^{3}} \int_{s_{1},s_{2},s_{3}} V_{\nu}^{c}(v;s_{1},s_{2},s_{3}) \prod_{1 \le i \le 3} (|c_{i}|y_{i})^{-s_{i}} ds_{i},$$

with the path of integration in each s_i being a vertical line in the complex plane, of sufficiently large real part to keep the poles of $V_{\nu}^c(v; s_1, s_2, s_3)$ on its left. Here $|\nu| := \nu_1 + \nu_2 + \nu_3 + \nu_4$ and $V_{\nu}^c(v; s_1, s_2, s_3)$ can be written as follows. (1) When h = 0, 4, we have

$$\begin{aligned} V_{\nu}^{c}(v_{0};s_{1},s_{2},s_{3}) &= \frac{1}{(4\pi\sqrt{-1})^{3}} \int_{t_{1},t_{2},u} \Gamma_{\mathbf{R}}(u+\nu_{3})\Gamma_{\mathbf{R}}(u+\nu_{4}) \\ &\times \Gamma_{\mathbf{R}}(t_{1}+\nu_{2})\Gamma_{\mathbf{R}}(t_{1}-u)\Gamma_{\mathbf{R}}(t_{2}-u+\nu_{2})\Gamma_{\mathbf{R}}(t_{2}+\nu_{3}+\nu_{4}) \\ &\times \Gamma_{\mathbf{R}}(s_{1}+\nu_{1})\Gamma_{\mathbf{R}}(s_{1}-t_{1})\Gamma_{\mathbf{R}}(s_{2}-t_{1}+\nu_{1})\Gamma_{\mathbf{R}}(s_{2}-t_{2}) \\ &\times \Gamma_{\mathbf{R}}(s_{3}-t_{2}+\nu_{1})\Gamma_{\mathbf{R}}(s_{3}+\nu_{2}+\nu_{3}+\nu_{4}) \, dudt_{1}dt_{2}. \end{aligned}$$

(2) When h = 1, 3, if we set

$$(j_1, j_2, j_3, j_4) = \begin{cases} (i_1, i'_1, i'_2, i'_3) & \text{if } h = 1; \\ (i'_1, i_1, i_2, i_3) & \text{if } h = 3, \end{cases}$$

then we have

$$\begin{aligned} V_{\nu}^{c}(v_{p};s_{1},s_{2},s_{3}) &= \frac{\sqrt{-1}^{-p}\prod_{i=p}^{3}\mathrm{sgn}(c_{i})}{(4\pi\sqrt{-1})^{3}}\int_{t_{1},t_{2},u}\Gamma_{\mathbf{R}}(u+\nu_{j_{3}})\Gamma_{\mathbf{R}}(u+\nu_{j_{4}}) \\ &\times\Gamma_{\mathbf{R}}(t_{1}+\nu_{j_{2}})\Gamma_{\mathbf{R}}(t_{1}-u)\Gamma_{\mathbf{R}}(t_{2}-u+\nu_{j_{2}})\Gamma_{\mathbf{R}}(t_{2}+\nu_{j_{3}}+\nu_{j_{4}}) \\ &\times\Gamma_{\mathbf{R}}(s_{1}+\nu_{j_{1}}+\chi_{p}(1))\Gamma_{\mathbf{R}}(s_{1}-t_{1}+1-\chi_{p}(1)) \\ &\times\Gamma_{\mathbf{R}}(s_{2}-t_{1}+\nu_{j_{1}}+\chi_{p}(2))\Gamma_{\mathbf{R}}(s_{2}-t_{2}+1-\chi_{p}(2)) \\ &\times\Gamma_{\mathbf{R}}(s_{3}-t_{2}+\nu_{j_{1}}+\chi_{p}(3))\Gamma_{\mathbf{R}}(s_{3}+\nu_{j_{2}}+\nu_{j_{3}}+\nu_{j_{4}}+1-\chi_{p}(3)) \\ &\times dudt_{1}dt_{2}\end{aligned}$$

for $1 \le p \le 4$. Here

$$\chi_p(a) = \begin{cases} 1 & \text{if } 1 \le a \le p-1; \\ 0 & \text{if } p \le a \le 3. \end{cases}$$

(3) When h = 2, we have

$$\begin{split} V_{\nu}^{c}(v_{pq};s_{1},s_{2},s_{3}) \\ &= \sum_{p \leq r \leq q-1} \frac{\sqrt{-1}^{-(p+q)} \prod_{i=p}^{3} \operatorname{sgn}(c_{i}) \prod_{j=q}^{3} \operatorname{sgn}(c_{j})}{(4\pi\sqrt{-1})^{3}} \int_{t_{1},t_{2},u} \Gamma_{\mathbf{R}}(u+\nu_{i_{1}'}) \Gamma_{\mathbf{R}}(u+\nu_{i_{2}'}) \\ &\times \Gamma_{\mathbf{R}}(t_{1}+\nu_{i_{2}}+\chi_{r}(1)) \Gamma_{\mathbf{R}}(t_{1}-u+1-\chi_{r}(1)) \\ &\times \Gamma_{\mathbf{R}}(t_{2}-u+\nu_{i_{2}}+\chi_{r}(2)) \Gamma_{\mathbf{R}}(t_{2}+\nu_{i_{1}'}+\nu_{i_{2}'}+1-\chi_{r}(2)) \\ &\times \Gamma_{\mathbf{R}}(s_{1}+\nu_{i_{1}}+\chi_{r}^{p,q}(1)) \Gamma_{\mathbf{R}}(s_{1}-t_{1}+\bar{\chi}_{r}^{p,q}(1)) \\ &\times \Gamma_{\mathbf{R}}(s_{2}-t_{1}+\nu_{i_{1}}+\chi_{r}^{p,q}(2)) \Gamma_{\mathbf{R}}(s_{2}-t_{2}+\bar{\chi}_{r}^{p,q}(2)) \\ &\times \Gamma_{\mathbf{R}}(s_{3}-t_{2}+\nu_{i_{1}}+\chi_{r}^{p,q}(3)) \Gamma_{\mathbf{R}}(s_{3}+\nu_{i_{2}}+\nu_{i_{1}'}+\nu_{i_{2}'}+\bar{\chi}_{r}^{p,q}(3)) dudt_{1}dt_{2} \end{split}$$

for $1 \le p < q \le 4$. Here

$$\chi_r(a) = \begin{cases} 1 & \text{if } 1 \le a \le r-1; \\ 0 & \text{if } r \le a \le 2, \end{cases}$$

$$\chi_r^{p,q}(a) = \begin{cases} 1 & \text{if } 1 \le a \le p-1 \text{ or } r+1 \le a \le q-1; \\ 0 & \text{if } p \le a \le r \text{ or } q \le a \le 3, \end{cases}$$

$$\bar{\chi}_r^{p,q}(a) = \begin{cases} 1 & \text{if } p \le a \le r-1 \text{ or } q \le a \le 3; \\ 0 & \text{if } 1 \le a \le p-1 \text{ or } r \le a \le q-1. \end{cases}$$

3.2 Contragredient Whittaker functions

Let $\tilde{\pi}_{I,\nu}$ be the contragredient representation of $\pi_{I,\nu}$. The representation $\tilde{\pi}_{I,\nu}$ also has Whittaker model, and in fact we have

$$\mathcal{W}(\widetilde{\pi}_{I,\nu},\psi_{\infty}^{(-c_3,-c_2,-c_1)}) = \{\widetilde{W} \mid W \in \mathcal{W}(\pi_{I,\nu},\psi_{\infty}^{(c_1,c_2,c_3)})\},\$$

where we set

$$\widetilde{W}(g) = W(w^{t}g^{-1}), \quad w = \begin{pmatrix} & & 1 \\ & 1 & \\ & 1 & \\ 1 & & \end{pmatrix}.$$

Using our explicit formulas in Theorem 3.1, we can determine the radial part of \widetilde{W} .

Proposition 3.2. The contragredient representation $\widetilde{\pi}_{I,\nu}$ of $\pi_{I,\nu}$ is isomorphic to $\pi_{I,-\nu}$. Moreover, for $W(g) = W_{\nu}^{c}(v;g)$ with $v \in V_{\tilde{h}}$, we have $\widetilde{W} \in \mathcal{W}(\pi_{I,-\nu}, \psi_{\infty}^{(-c_{3},-c_{2},-c_{1})})$ and the radial part of \widetilde{W} are given as

$$\widetilde{W}(y) = |c_1 c_2 c_3|^{|\nu|} \cdot C(v) \cdot W^{(-c_3, -c_2, -c_1)}_{-\nu}(v; y).$$

Here the constants C(v) are

$$C(v) = \begin{cases} 1 & \text{if } \tilde{h} = 0 \text{ and } v = v_0; \\ -\sqrt{-1} \operatorname{sgn}(c_1 c_2 c_3) & \text{if } \tilde{h} = 1 \text{ and } v = v_p \ (1 \le p \le 4); \\ 1 & \text{if } \tilde{h} = 2 \text{ and } v = v_{pq} \ (1 \le p < q \le 4). \end{cases}$$

3.3 Calculus of archimedean zeta integrals

For $W \in \mathcal{W}(\pi_{I,\nu}, \psi_{\infty}^c)$ and $s_1, s_2 \in \mathbf{C}$, we wish to compute the following archimedean zeta integral:

$$Z_{\infty}(s_1, s_2, W, \Phi_n) = \int_{\mathcal{N}_2(\mathbf{R}) \setminus \mathrm{GL}_2(\mathbf{R})} \int_{\mathcal{N}_2(\mathbf{R}) \setminus \mathrm{GL}_2(\mathbf{R})} W(J(g_1, g_2)) \Phi_n((0, 1)g_2)$$
$$\times |\det g_1|^{s_1 - 1/2} |\det g_2|^{-s_1 + s_2 + 1/2} dg_1 dg_2,$$

where $\Phi_n(x_1, x_2) = (\text{sgn}(n)\sqrt{-1}x_1 + x_2)^{|n|} \exp\{-\pi(x_1^2 + x_2^2)\}$. Using the Iwasawa decomposition of $\text{GL}_2(\mathbf{R})$, we have

$$Z_{\infty}(s_1, s_2, W, \Phi_n) = 2^{-3} \Gamma_{\mathbf{R}}(2s_2 + |\nu| + |n|) \sum_{0 \le i \le 3} \int_{(\mathbf{R}_+)^3} \int_0^{2\pi} \int_0^{2\pi} W(m_i \, a[y_1, y_2, y_3, 1] \, \kappa_{\theta_1, \theta_2}) \\ \times \exp(\sqrt{-1}n\theta_2) \, y_1^{s_1 - 3/2} y_2^{s_2 - 2} y_3^{s_1 + s_2 - 3/2} \prod_{i=1}^2 \frac{d\theta_i}{2\pi} \prod_{i=1}^3 \frac{dy_i}{y_i},$$

where

•
$$\kappa_{\theta_1,\theta_2} = J(\kappa_{\theta_1},\kappa_{\theta_2})$$
 with $\kappa_{\theta_i} = \begin{pmatrix} \cos\theta_i & \sin\theta_i \\ -\sin\theta_i & \cos\theta_i \end{pmatrix}$ $(i = 1,2),$

• $m_0 = 1_4, m_1 = \text{diag}(-1, 1, 1, 1), m_2 = \text{diag}(1, -1, 1, 1), m_3 = m_1 m_2.$

Here is our main result.

Theorem 3.3. We use the same notation as in Theorem 3.1. For $\varepsilon \in \{\pm 1\}$, we abbreviate $W_{\nu}^{\varepsilon} = W_{\nu}^{(\varepsilon,\varepsilon,\varepsilon)}$ and $V_{\nu}^{\varepsilon} = V_{\nu}^{(\varepsilon,\varepsilon,\varepsilon)}$. We take a pair $(W, \Phi) \in \mathcal{W}(\pi_{I,\nu}, \psi_{\infty}^{(\varepsilon)}) \times \mathcal{S}(\mathbf{R}^2)$ of Whittaker function and Schwartz function as the following. (1) When h = 0, we set

$$W(g) = W_{\nu}^{\varepsilon}(v_0; g), \ \Phi = 2\Phi_0.$$

(2) When h = 1, we set

$$W(g) = W_{\nu}^{\varepsilon}(v_2 + \sqrt{-1}v_4; g), \ \Phi = -2\sqrt{-1}\Phi_{-1}.$$

(3) When h = 2, we set

$$W(g) = \frac{1}{4\pi\sqrt{-1}} \{ R(X_{12}) W_{\nu}^{\varepsilon}(v_{12};g) - R(X_{23}) W_{\nu}^{\varepsilon}(v_{23};g) + R(X_{34}) W_{\nu}^{\varepsilon}(v_{34};g) + R(X_{14}) W_{\nu}^{\varepsilon}(v_{14};g) \},$$

$$\Phi = -2\sqrt{-1}\Phi_0.$$

(4) When h = 3, we set

$$W(g) = \frac{1}{4\pi\sqrt{-1}} \{ R(X_{23} + \sqrt{-1}X_{34}) W_{\nu}^{\varepsilon}(v_1;g) - R(X_{12} + \sqrt{-1}X_{14}) W_{\nu}^{\varepsilon}(v_3;g) \}$$

$$\Phi = 2\sqrt{-1}\Phi_{-1}.$$

(5) When h = 4, we set

$$W(g) = \frac{1}{(4\pi\sqrt{-1})^2} R(X_{12}X_{34} - X_{23}X_{14}) W_{\nu}^{\varepsilon}(v_0;g), \ \Phi = 2\Phi_0.$$

Then we have

$$Z_{\infty}(s_1, s_2, W, \Phi) = L(s_1, \pi_{\infty})L(s_2, \pi_{\infty}, \wedge^2).$$

Proof. The case of h = 0 is done by Stade [12]. We illustrate our proof when h = 2. We first check that $W(g\kappa_{\theta_1,\theta_2}) = W(g)$. For $1 \le p < q \le 4$, the function $W_{pq}(g) := R(X_{pq})W_{\nu}^{\varepsilon}(v_{pq},g)$ satisfies the relation

$$W_{pq}(gk) = W(\tau_{(2,0)}(k)v_{pq}; g \cdot kX_{pq}k^{-1}) \ (k \in K).$$

Since $\mathfrak{p}^0_{\mathbf{C}}$ can be identified with V_2 via the adjoint action, and

$$(\tau_{(2,0)}(\kappa_{\theta_1,\theta_2})v_{12}, \tau_{(2,0)}(\kappa_{\theta_1,\theta_2})v_{23}, \tau_{(2,0)}(\kappa_{\theta_1,\theta_2})v_{34}, \tau_{(2,0)}(\kappa_{\theta_1,\theta_2})v_{14}) = (v_{12}, v_{23}, v_{34}, v_{14}) \begin{pmatrix} c_1c_2 & c_1s_2 & s_1s_2 & s_1c_2 \\ -c_1s_2 & c_1c_2 & s_1c_2 & -s_1s_2 \\ s_1s_2 & -s_1c_2 & c_1c_2 & -c_1s_2 \\ -s_1c_2 & -s_1s_2 & c_1s_2 & c_1c_2 \end{pmatrix}$$

with $(c_i, s_i) = (\cos \theta_i, \sin \theta_i)$, we can see that $W(g \kappa_{\theta_1, \theta_2}) = W(g)$.

Let us compute the radial part W(y). For $1 \le i < j \le 4$, we have

$$\begin{aligned} R(X_{ij})W_{\nu}^{\varepsilon}(v_{ij};y) &= R(2E_{ij} - K_{ij})W_{\nu}^{\varepsilon}(v_{ij};y) \\ &= R(2E_{ij})W_{\nu}^{\varepsilon}(v_{ij};y) \\ &= \begin{cases} 4\pi\sqrt{-1}\varepsilon y_i W_{\nu}^{\varepsilon}(v_{ij};y) & \text{if } j = i+1; \\ 0 & \text{if } j \ge i+2. \end{cases} \end{aligned}$$

Then, combined with $W(m_i y) = W(y)$ $(0 \le i \le 3)$, we have

$$W(y) = 4\pi\sqrt{-1}\varepsilon\{y_1W_{\nu}^{\varepsilon}(v_{12};y) - y_2W_{\nu}^{\varepsilon}(v_{23};y) + y_3W_{\nu}^{\varepsilon}(v_{34};y)\},\$$

and thus

$$Z(s_1, s_2, W, \Phi) = -\varepsilon \sqrt{-1} \Gamma_{\mathbf{R}}(2s_2 + |\nu|) \{ V_{\nu}^{\varepsilon}(v_{12}; s_1 + 1, s_2, s_1 + s_2) - V_{\nu}^{\varepsilon}(v_{23}; s_1, s_2 + 1, s_1 + s_2) + V_{\nu}^{\varepsilon}(v_{34}; s_1, s_2, s_1 + s_2 + 1) \}$$

Using our explicit formula in Theorem 3.1 (ii) and Barnes' first lemma [10, §4.2]:

$$\frac{1}{4\pi\sqrt{-1}} \int_{z} \Gamma_{\mathbf{R}}(z+a)\Gamma_{\mathbf{R}}(z+b)\Gamma_{\mathbf{R}}(-z+c)\Gamma_{\mathbf{R}}(-z+d) dz$$
$$= \frac{\Gamma_{\mathbf{R}}(a+c)\Gamma_{\mathbf{R}}(a+d)\Gamma_{\mathbf{R}}(b+c)\Gamma_{\mathbf{R}}(b+d)}{\Gamma_{\mathbf{R}}(a+b+c+d)},$$

we get

$$\begin{split} Z(s_1, s_2, W, \Phi) \\ &= \Gamma_{\mathbf{R}}(2s_2 + |\nu|)\Gamma_{\mathbf{R}}(s_1 + \nu_{i_1} + 1)\Gamma_{\mathbf{R}}(s_1 + \nu_{i_2} + 1) \\ &\times \Gamma_{\mathbf{R}}(s_1 + s_2 + \nu_{i_1} + \nu_{i'_1} + \nu_{i'_2} + 1)\Gamma_{\mathbf{R}}(s_1 + s_2 + \nu_{i_2} + \nu_{i'_1} + \nu_{i_2}) \\ &\times \frac{1}{4\pi\sqrt{-1}} \int_{u} \frac{\Gamma_{\mathbf{R}}(u + \nu_{i'_1})\Gamma_{\mathbf{R}}(u + \nu_{i'_2})\Gamma_{\mathbf{R}}(s_2 - u + \nu_{i_1} + 1)\Gamma_{\mathbf{R}}(s_2 - u + \nu_{i_2} + 1)}{\Gamma_{\mathbf{R}}(s_1 + s_2 - u + \nu_{i_1} + \nu_{i_2} + 2)\Gamma_{\mathbf{R}}(s_1 + 2s_2 - u + |\nu| + 2)} \\ &\times \left\{\Gamma_{\mathbf{R}}(s_1 - u + 2)\Gamma_{\mathbf{R}}(s_2 + \nu_{i_1} + \nu_{i_2})\Gamma_{\mathbf{R}}(s_1 + s_2 - u + \nu_{i_1} + \nu_{i_2})\Gamma_{\mathbf{R}}(s_2 + \nu_{i'_1} + \nu_{i'_2} + 2) \right. \\ &+ \left. \Gamma_{\mathbf{R}}(s_1 - u)\Gamma_{\mathbf{R}}(s_2 + \nu_{i_1} + \nu_{i_2} + 2)\Gamma_{\mathbf{R}}(s_1 + s_2 - u + \nu_{i_1} + \nu_{i_2})\Gamma_{\mathbf{R}}(s_2 + \nu_{i'_1} + \nu_{i'_2} + 2) \right. \\ &+ \left. \Gamma_{\mathbf{R}}(s_1 - u)\Gamma_{\mathbf{R}}(s_2 + \nu_{i_1} + \nu_{i_2} + 2)\Gamma_{\mathbf{R}}(s_1 + s_2 - u + \nu_{i_1} + \nu_{i_2} + 2)\Gamma_{\mathbf{R}}(s_2 + \nu_{i'_1} + \nu_{i'_2} + 2) \right\} du. \end{split}$$

In view of $\Gamma_{\mathbf{R}}(s+2) = (2\pi)^{-1} s \Gamma_{\mathbf{R}}(s)$, the bracket $\{ \}$ in the integrand above can be written as

$$\Gamma_{\mathbf{R}}(s_{1}-u)\Gamma_{\mathbf{R}}(s_{2}+\nu_{i_{1}}+\nu_{i_{2}})\Gamma_{\mathbf{R}}(s_{2}+\nu_{i'_{1}}+\nu_{i'_{2}}) \\ \times \frac{\Gamma_{\mathbf{R}}(s_{1}+s_{2}-u+\nu_{i_{1}}+\nu_{i_{2}}+2)\Gamma_{\mathbf{R}}(2s_{2}+|\nu|+2)}{\Gamma_{\mathbf{R}}(2s_{2}+|\nu|)}.$$

Therefore we can perform the integration over u by means of Barnes' second lemma [10, §4.2]:

$$\frac{1}{4\pi\sqrt{-1}} \int_{z} \frac{\Gamma_{\mathbf{R}}(z+a)\Gamma_{\mathbf{R}}(z+b)\Gamma_{\mathbf{R}}(z+c)\Gamma_{\mathbf{R}}(-z+d)\Gamma_{\mathbf{R}}(-z+e)}{\Gamma_{\mathbf{R}}(z+a+b+c+d+e)} dz$$
$$= \frac{\Gamma_{\mathbf{R}}(a+d)\Gamma_{\mathbf{R}}(a+e)\Gamma_{\mathbf{R}}(b+d)\Gamma_{\mathbf{R}}(b+e)\Gamma_{\mathbf{R}}(c+d)\Gamma_{\mathbf{R}}(c+e)}{\Gamma_{\mathbf{R}}(a+b+d+e)\Gamma_{\mathbf{R}}(b+c+d+e)\Gamma_{\mathbf{R}}(c+a+d+e)},$$

to finish the proof of (iii).

From Theorem 3.3 and Proposition 3.2 we can show the following:

Corollary 3.4. When $\pi_{\infty} \cong \pi_{I,\nu}$, there exists a pair $(W, \Phi) \in \mathcal{W}(\pi_{\infty}, \psi_{\infty}^{(+1)}) \times \mathcal{S}(\mathbf{R}^2)$ such that

$$Z_{\infty}(s_1, s_2, W, \Phi) = L(s_1, \pi_{\infty})L(s_2, \pi_{\infty}, \wedge^2)$$

and

$$Z_{\infty}(s_1, s_2, \widetilde{W}, \widehat{\Phi}) = \varepsilon(s_1, \pi_{\infty}, \psi_{\infty}^1) \varepsilon(s_2, \pi_{\infty}, \wedge^2, \psi_{\infty}^1) L(s_1, \widetilde{\pi}_{\infty}) L(s_2, \widetilde{\pi}_{\infty}, \wedge^2).$$

3.4 Global functional equation

Theorem 3.5. Let $\pi \cong \otimes'_v \pi_v$ be a cuspidal automorphic representation of $GL_4(\mathbf{A}_{\mathbf{Q}})$ satisfying the following conditions:

(1) For $v = p < \infty$, π_v is isomorphic to the unramified principal series representation of $\operatorname{GL}_4(\mathbf{Q}_p)$;

(2) For $v = \infty$, π_v is isomorphic to the principal series representation $\pi_{I,\nu}$ of $\operatorname{GL}_4(\mathbf{R})$. Then the completed exterior square L-function $L(s,\pi,\wedge^2) = \prod_{v \leq \infty} L(s,\pi_v,\wedge^2)$ can be holomorphically continued to the whole s-plane with at most simple poles at s = 0, 1, and satisfies the functional equation

$$L(s,\pi,\wedge^2) = \varepsilon(s,\pi,\wedge^2)L(1-s,\widetilde{\pi},\wedge^2).$$

Proof. The functional equation (1.1) of zeta integral, Proposition 1.2 and Corollary 3.4 implies that

$$L(s_1,\pi)L(s_2,\pi,\wedge^2) = \varepsilon(s_1,\pi)\varepsilon(s_2,\pi,\wedge^2)L(1-s_1,\widetilde{\pi})L(1-s_2,\widetilde{\pi},\wedge^2).$$

Since the functional equation for the standard *L*-function $L(s, \pi)$ has established in [2], we are done.

We remark some related works for GL_n .

Remark 2. (i) When π_{∞} is isomorphic to the class one principal series representation of $\operatorname{GL}_n(\mathbf{R})$, Stade [13] computed the archimedean zeta integrals to prove the result above. (ii) Via Langlands-Shahidi method, Kim [7] proved the analytic continuations and the functional equations for the completed exterior square *L*-functions on GL_n . He proved $L(s, \pi, \wedge^2)$

is holomorphic except that n is even and π is self-dual. (iii) Recently Miller and Schmidt ([8], [9]) discover a new way for archimedean theory of automorphic L-functions. They introduce "automorphic distribution method" and prove

automorphic *L*-functions. They introduce "automorphic distribution method" and prove the global functional equation for the exterior square *L*-function on $\operatorname{GL}_n(\mathbf{A}_{\mathbf{Q}})$ without any assumptions on π_{∞} .

References

- D. Bump and S. Friedberg, The exterior square automorphic L-functions on GL(n), In: Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), 47–65, Israel Math. Conf. Proc., 3, Weizmann, Jerusalem, 1990.
- [2] R. Godement and H. Jacquet, Zeta functions of simple algebras, Lecture Notes in Mathematics, 260, Springer-Verlag, Berlin-New York, 1972.
- [3] T. Hina, T. Ishii and T. Oda, Calculus of principal series Whittaker functions on $SL(4, \mathbf{R})$, preprint.
- [4] T. Ishii and T. Oda, Calculus of principal series Whittaker functions on $SL(n, \mathbf{R})$, preprint.
- [5] T. Ishii and E. Stade, New formulas for Whittaker functions on $GL(n, \mathbf{R})$, J. Funct. Anal. **244** (2007), 289–314.
- [6] H. Jacquet and J. Shalika, Exterior square L-functions, In: Automorphic forms, Shimura varieties, and L-functions, Vol. II (Ann Arbor, MI, 1988), 143–226, Perspect. Math., 11, Academic Press, Boston, MA, 1990.
- [7] H. H. Kim, Langlands-Shahidi method and poles of automorphic L-functions: application to exterior square L-functions, Canad. J. Math. 51 (1999), 835–849.
- [8] S. D. Miller and W. Schmid, The Rankin-Selberg method for automorphic distributions, In: Representation theory and automorphic forms, 111–150, Prog. Math., 255, Birkhäuser Boston, MA, 2008.
- [9] S. D. Miller and W. Schmid, The archimedean theory of the Exterior Square L-functions over Q, arXiv:1109.4190.

- [10] L. J. Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966.
- [11] J. Shalika The multiplicity one theorem for GL_n , Ann. Math. (2) 100 (1974), 171–193.
- [12] E. Stade, On explicit integral formulas for $GL(n, \mathbf{R})$ -Whittaker functions, Duke Math. J. **60** (1990), 313–362.
- [13] E. Stade, Mellin transforms of $GL(n,{\bf R})$ Whittaker functions, Amer. J. Math. 123 (2001), 121–161.