Modular groups and motives

Takashi Ichikawa (Saga University)

1 Introduction

Let Γ be a modular group which is defined as the fundamental group of a moduli space. Then its nilpotent completion $\widehat{\Gamma}$ gives rise to extensions of certain quotients of $H_1(\Gamma)^{\otimes i}$ by themselves. When the moduli space has a natural model defined over a number field, by results of Deligne [D] and Hain [H1, 2], $\widehat{\Gamma}$ becomes a mixed motive which has especially Galois action and mixed Hodge structure. Furthermore, periods of this Hodge structure become iterated integrals which are represented as multiple *L*-values. Deligne and others (cf. [DG]) showed that for the moduli of curves of genus 0, $\widehat{\Gamma}$ has rich structure of mixed Tate motives. In this note, we consider the moduli of curves (with additional structure) of positive genus, and review a result of [I] on the motivic theory of $\widehat{\Gamma}$.

2 Teichmüller modular case

2.1

Let g and n be integers such that $3g - 3 + n \ge 0$, and $M_{g,n}$ be the moduli space of Riemann surfaces of genus g with n boundary components. Then $M_{g,n}$ has a natural model over \mathbf{Q} . Let $\Gamma_{g,n}$ be the fundamental group of $M_{g,n}$ whose base point is a point at infinity corresponding to a maximally degenerate algebraic curve, and $\Gamma_{g,n} \to Sp_{2g}(\mathbf{Z})$ be the natural homomorphism whose kernel is the Torelli group $T_{g,n}$. Note that $\Gamma_{g,n}$ has the trivial nilpotent completion for $g \ge 3$. Then Hain [H3] introduced the relative completion $R_{g,n}$ of $\Gamma_{g,n}$ for $\Gamma_{g,n} \to Sp_{2g}(\mathbf{Z})$ which is defined as the universal pro-algebraic group over \mathbf{Q} with parallel exact sequences:

where $U_{g,n}$ is pro-unipotent, and the middle downarrow is a homomorphism with Zariski dense image. Further, he showed jointly with M. Matsumoto (cf. [H4, 5, HM]) that the Lie algebra Lie $(R_{q,n})$ of $R_{q,n}$ has motivic structure.

2.2

Theorem (cf. [I]). Assume that $g \geq 3$, and let l be a prime. Then the $G_{\mathbf{Q}}$ -module $\operatorname{Lie}(R_{g,n}) \otimes \mathbf{Q}_l$ is generated by the l-adic realizations of mixed Tate motives, $\operatorname{Lie}(R_{1,1}) \otimes \mathbf{Q}_l$ and $\operatorname{Lie}(R_{1,2}) \otimes \mathbf{Q}_l$.

2.3

We give a sketch of this proof. First, using a result of Lochak [L] we show Teichmüller's Lego game proposed by Grothendieck [G] which claims that $\Gamma_{q,n}$ is an amalgamated product

of $\Gamma_{0,4}$, $\Gamma_{0,5}$, $\Gamma_{1,1}$ and $\Gamma_{1,2}$, and that this product representation is $G_{\mathbf{Q}}$ -equivariant under the profinite completed version. Hence by a result of Hain on the relation between $U_{g,n}$ and the unipotent completion of $T_{g,n}$, under the assumption that $g \geq 3$, we can show that the $G_{\mathbf{Q}}$ -module Lie $(R_{g,n}) \otimes \mathbf{Q}_l$ is generated by

 $\operatorname{Lie}(R_{0,4}) \otimes \mathbf{Q}_l$, $\operatorname{Lie}(R_{0,5}) \otimes \mathbf{Q}_l$, $\operatorname{Lie}(R_{1,1}) \otimes \mathbf{Q}_l$, $\operatorname{Lie}(R_{1,2}) \otimes \mathbf{Q}_l$.

Furthermore, the first two $G_{\mathbf{Q}}$ -modules are generated by the *l*-adic realizations of mixed Tate motives.

References

- [D] P. Deligne, Le groupe fondamental de la droite projective moins trois points, in: Galois groups over Q, 79–298, Math. Sci. Res. Inst. Publ. 16, Springer, New York, 1989.
- [DG] P. Deligne and A. B. Goncharov, Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. École Norm. Sup. 38 (2005), 1–56.
- [G] A. Grothendieck, Esquisse d'un programme, in: Geometric Galois Actions I, 5–48, London Math. Soc. Lect. Note Ser. 242, Cambridge Univ. Press, Cambridge, 1997.
- [H1] R. Hain, The de Rham homotopy of complex algebraic varieties I, II, K-theory 1 (1987), 271–324, 481–497.
- [H2] R. Hain, The geometry of the mixed Hodge structure on the fundamental group, Proc. Symp. Pure Math. 6-2 (1987), 247–282.
- [H3] R. Hain, Completions of mapping class groups and the cycle $C C^-$, in: Mapping class groups and moduli spaces of Riemann surfaces, 75–105, Contemporary Math. **150**, Amer. Math. Soc., Providence, RI, 1993.
- [H4] R. Hain, Infinitesimal presentations of Torelli groups, J. Amer. Math. Soc. 10 (1997), 597–651.
- [H5] R. Hain, The Hodge-de Rham theory of relative Malcev completion, Ann. Sci. Ecole Norm. Sup. (4) 31 (1998), 47–92.
- [HM] R. Hain and M. Matsumoto, Relative pro-*l* completions of the mapping class groups, J. Algebra **321** (2009), 3335–3374.
- [I] T. Ichikawa, The Lego game for Teichmüller modular groups and their relative completions, in preparation.
- [L] P. Lochak, The fundamental groups at infinity of the moduli spaces of curves, in: Geometric Galois Actions I, 325–347, London Math. Soc. Lecture Note Ser. 243, Cambridge Univ. Press, Cambridge, 1997.