Modular groups and motives

Takashi Ichikawa (Saga University)

1 Introduction

Let Γ be a modular group which is defined as the fundamental group of a moduli space. Then its nilpotent completion $\widehat{\Gamma}$ gives rise to extensions of certain quotients of $H_{1}(\Gamma)^{\otimes i}$ by themselves. When the moduli space has a natural model defined over a number field, by results of Deligne [D] and Hain [H1, 2], $\widehat{\Gamma}$ becomes a mixed motive which has especially Galois action and mixed Hodge structure. Furthermore, periods of this Hodge structure become iterated integrals which are represented as multiple L-values. Deligne and others (cf. [DG]) showed that for the moduli of curves of genus $0, \widehat{\Gamma}$ has rich structure of mixed Tate motives. In this note, we consider the moduli of curves (with additional structure) of positive genus, and review a result of $[I]$ on the motivic theory of $\widehat{\Gamma}$.

2 Teichmüller modular case

2.1

Let g and n be integers such that $3 g-3+n \geq 0$, and $M_{g, n}$ be the moduli space of Riemann surfaces of genus g with n boundary components. Then $M_{g, n}$ has a natural model over \mathbf{Q}. Let $\Gamma_{g, n}$ be the fundamental group of $M_{g, n}$ whose base point is a point at infinity corresponding to a maximally degenerate algebraic curve, and $\Gamma_{g, n} \rightarrow S p_{2 g}(\mathbf{Z})$ be the natural homomorphism whose kernel is the Torelli group $T_{g, n}$. Note that $\Gamma_{g, n}$ has the trivial nilpotent completion for $g \geq 3$. Then Hain [H3] introduced the relative completion $R_{g, n}$ of $\Gamma_{g, n}$ for $\Gamma_{g, n} \rightarrow S p_{2 g}(\mathbf{Z})$ which is defined as the universal pro-algebraic group over \mathbf{Q} with parallel exact sequences:
where $U_{g, n}$ is pro-unipotent, and the middle downarrow is a homomorphism with Zariski dense image. Further, he showed jointly with M. Matsumoto (cf. [H4, 5, HM]) that the Lie algebra Lie ($R_{g, n}$) of $R_{g, n}$ has motivic structure.

2.2

Theorem (cf. [$\mathbf{I}]$). Assume that $g \geq 3$, and let l be a prime. Then the $G_{\mathbf{Q}}$-module Lie $\left(R_{g, n}\right) \otimes \mathbf{Q}_{l}$ is generated by the l-adic realizations of mixed Tate motives, $\operatorname{Lie}\left(R_{1,1}\right) \otimes \mathbf{Q}_{l}$ and $\operatorname{Lie}\left(R_{1,2}\right) \otimes \mathbf{Q}_{l}$.

2.3

We give a sketch of this proof. First, using a result of Lochak [L] we show Teichmüller's Lego game proposed by Grothendieck $[\mathrm{G}]$ which claims that $\Gamma_{g, n}$ is an amalgamated product
of $\Gamma_{0,4}, \Gamma_{0,5}, \Gamma_{1,1}$ and $\Gamma_{1,2}$, and that this product representation is $G_{\mathbf{Q}}$-equivariant under the profinite completed version. Hence by a result of Hain on the relation between $U_{g, n}$ and the unipotent completion of $T_{g, n}$, under the assumption that $g \geq 3$, we can show that the $G_{\mathbf{Q}}$-module $\operatorname{Lie}\left(R_{g, n}\right) \otimes \mathbf{Q}_{l}$ is generated by

$$
\operatorname{Lie}\left(R_{0,4}\right) \otimes \mathbf{Q}_{l}, \operatorname{Lie}\left(R_{0,5}\right) \otimes \mathbf{Q}_{l}, \operatorname{Lie}\left(R_{1,1}\right) \otimes \mathbf{Q}_{l}, \operatorname{Lie}\left(R_{1,2}\right) \otimes \mathbf{Q}_{l} .
$$

Furthermore, the first two $G_{\mathbf{Q}}$-modules are generated by the l-adic realizations of mixed Tate motives.

References

[D] P. Deligne, Le groupe fondamental de la droite projective moins trois points, in: Galois groups over Q , 79-298, Math. Sci. Res. Inst. Publ. 16, Springer, New York, 1989.
[DG] P. Deligne and A. B. Goncharov, Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. École Norm. Sup. 38 (2005), 1-56.
[G] A. Grothendieck, Esquisse d'un programme, in: Geometric Galois Actions I, 5-48, London Math. Soc. Lect. Note Ser. 242, Cambridge Univ. Press, Cambridge, 1997.
[H1] R. Hain, The de Rham homotopy of complex algebraic varieties I, II, K-theory 1 (1987), 271-324, 481-497.
[H2] R. Hain, The geometry of the mixed Hodge structure on the fundamental group, Proc. Symp. Pure Math. 6-2 (1987), 247-282.
[H3] R. Hain, Completions of mapping class groups and the cycle $C-C^{-}$, in: Mapping class groups and moduli spaces of Riemann surfaces, 75-105, Contemporary Math. 150, Amer. Math. Soc., Providence, RI, 1993.
[H4] R. Hain, Infinitesimal presentations of Torelli groups, J. Amer. Math. Soc. 10 (1997), 597-651.
[H5] R. Hain, The Hodge-de Rham theory of relative Malcev completion, Ann. Sci. Ecole Norm. Sup. (4) 31 (1998), 47-92.
[HM] R. Hain and M. Matsumoto, Relative pro-l completions of the mapping class groups, J. Algebra 321 (2009), 3335-3374.
[I] T. Ichikawa, The Lego game for Teichmüller modular groups and their relative completions, in preparation.
[L] P. Lochak, The fundamental groups at infinity of the moduli spaces of curves, in: Geometric Galois Actions I, 325-347, London Math. Soc. Lecture Note Ser. 243, Cambridge Univ. Press, Cambridge, 1997.

