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1 Introduction

In this short report, we will highlight the bijective correspondence via the exponential/loga-
rithm maps between the Lie algebra of derivations and the group of algebra automorphisms
on the non-commutative algebra of formal power series in two variables. A purpose of this
notes is to describe the corresponding automorphism explicitly for given any derivation and
to investigate the structure in the behind.

This kind of study is started in [7] motivated by the study of multiple zeta values and
developed in [5] and [6] as a purely algebraic problem. Actually, in [7], various operations on
the space of multiple zeta values are translated to the language of derivations on the algebra
of power series. Relations among operations were clarified by looking at the corresponding
automorphisms rather than derivations themselves via the exponential map. In the story
of multiple zeta values or in related topics, the non-commutative algebra of formal power
series in two variables appears naturally as the completion of the tensor algebra of the
space of holomorphic 1-forms on P* \ {0, 1,00}, or as a completion of the group ring of the
fundamental group of P! \ {0, 1,00}, both of which are isomorphic as complete augmented
algebras discussed in the appendix of [10].

It is fundamental and must be useful to clarify the structure of the derivation Lie algebra,
that of the automorphism group, and their relations.

In this notes we introduce the results in the references [5, 6, 7] and will explain them
more. First we define a specific class of derivations on the algebra of power series and
discuss the structure of the Lie algebra generated by the derivations, and then determine
the corresponding class of automorphisms via the exponential map.

2 Notation

Let k be a field of characteristic zero. The algebra R = k(a,b) of non-commutative poly-
nomials in two variables over the field £ has a natural grading by defining the degree of
the generators a and b are one. The ideal m consisting the polynomials which does not
have constant term is the unique maximal ideal of R. The completion R" of R with re-
spect to the topology induced from the filtration defined by the sequence of powers of ideal:
m D m? D --- can be identified with the algebra k({a,b)) of the non-commutative formal
power series in two variables. For any ideal i of R, i" denotes the closure of i in R". For
instance (m™)” is the ideal of R" consists of the power series whose smallest degree of terms
is larger than or equal to n. The R" is a typical example of complete augmented algebras
over k by the natural projection map R" — k.
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Let Der(R") be the space of all derivations on R" over k. By definition, a derivation D
is a k-linear endomorphism on R" satisfies the Leibniz rule: D(zy) = D(z)y+zD(y) for any
elements z,y in R". The Der(R") forms a Lie algebra over k under the usual commutator
bracket operation: [D,D'] := DD’ — D'D. On the other hand, Aut(R") denotes the set of
all algebra automorphisms on R" over k. An automorphism A is a k-linear automorphism
on R" satisfying A(zy) = A(z)A(y). The Aut(R") forms a group under the composition.

Let Der™(R") be the Lie subalgebra consisting of derivations D which increase the
degree: D(m”") C (m?2)", where (m?)" is the closure of m? in R". Let Aut!(R") be the the
subgroup consisting of automorphisms A such that (Id — A)(m”) C (m2)". Such derivations
and automorphisms induce the trivial derivation and the identity map, respectively on the
associated graded algebra gr(R") = @(m®)"/(m*+H" of R,

The exponential map and the logarithm map are defined by usual way and give a one-
to-one correspondence between Der'(R") and Aut!(R"):

1 1
exp(D) =P = Z — D", log A = — Z —((Id—A)™
m2>0 m: m>1

for D € Der™(R") and A € Aut'(R"). Since D and Id — A have the degree-increasing
properties, the infinite sum of both RHSs are convergent. Also here the assumption on the
characteristic of k is used to define the maps.

The problem what we like to focus here is to give the complete description of the corre-
spondence between Der™ (R") and Aut!(R") via the exponential/logarithm maps.

3 Examples

Before beginning the subject, let’s see the typical examples. Note that a derivation (resp. an
automorphism) on R" = k{(a,b)) is uniquely determined by the values on the generators.
Since R is generated (topologically) freely by a and b, one can choose any elements in
(m?2)" as values on generators: Der' (R") 2 (m?)" x (m?)". We use the notation (1 —w)~! =
14w+ w?+--- for w € m" throughout the notes.

Example. Define the derivation D € Der™ (R") by
D(a) =a?,  D(b) = ab.
Then the corresponding automorphism is characterized by
exp(D)(a) = (1 — a) 'a, exp(D)(b) = (1 —a) 'b.

This example can be easily checked by seeing D™(a) = m!a™t! and D™(b) = m!a™b by
using induction.

Example. Define the derivation D € Der™ (R") by
D(a) =a®,  D(b) = ab— 3ba + b°.
Then the corresponding automorphism is characterized by
exp(D)(a) = (1 —a) ‘a, exp(D)(b) = (1 —a) 'b(1 —a — 3b) 1(1 —a)%

This result may show the difficulty to compute the formula for D™ in general. This example
is a special case of Corollary 2 in Section 6.
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4 Derivations

In this section, we define a specific class of derivations of R" = k((a, b)) discussed in [7, 5, 6]
and study the structure of the Lie algebra generated by them.

Definition 1. For n > 1 and for elements «, 3,7, and A in k, define the family of deriva-
tions Dy, :== D, (\; o, B,7,6) € Dert(R") by

D,(a) = Xa™', D, (b) = ca™! + Ba™b + yba™ + 5ba™ .

The derivations in Examples in Section 3 are special cases of this class. This class of
derivations are defined and discussed in [7, 5] in the case of A = 0, and in [6] in general case.
In this paper, we always fix the parameters «, 3,7,6 and A in k.

Let £ = L(\;a,3,7,6) be the Lie subalgebra of Der™ (R") topologically generated by
all D, for n > 1. This means that £ is the closure of the Lie algebra generated by all D,, in
R". Note that £ is graded naturally whose all graded components are 1-dimensional. The
following proposition says that the family {D,} satisfies nice bracket relations.

Proposition 1 ([6]). For any m,n > 1 and for fized o, 8,7,8 and X, we have
(i) [Dm’Dn] = Am — n)Dpyn.

(i) Dni1 = ad® 1(D1)(Dy)/(n — 1)! := X»1[Dy, Dy, -+ [D1, Ds] -]/ (n — 1)L.

The first relation is proved by checking values of both-sides on generators a and b. (ii)
is deduced from (i).

From the proposition, we know L is a non-abelian Lie algebra unless A = 0 and is
generated (topologically) by D; and Dy. As a remark, when A = 1, the relation (i) is known
as that of a classical Witt algebras in conformal field theory (cf. [11] on the Witt algebras).
It is also proved that there does not exist a derivation 6 of degree 1 (namely, 6(a) and 6(b)
are homogeneous of degree 2) satisfies Dy = [0, D1].

Since any element in £ is an infinite linear combination of D,,’ s, we use the following
notation introduced in [7] and extend it to our case.

Let k[[X]] be the commutative algebra of formal power series in an indeterminate X over
field k. Let L = Xk[[X]] be the subspace consisting of power series of constant term zero,
and G = 1+ Xk[[X]] be a set of power series of constant term 1. The exponential/logarithm
maps give a bijective correspondence between L and G.

Definition 2. For any f(X) = ZnZl ¢, X" € L, define the derivation Dy := D¢(X\; o, 8,7,
§) € L C Der™(R") by Df(\e, 8,7,6) = Y51 enDn(X e, B,7,68). The action of Dy on
generators are given by -

Dy(a) = Af(a)a, Dy(b) =af(a)a+ Bf(a)b+ybf(a)+ 6b@b.
Note that the asignment D : f + D; gives an linear isomorphism from L and £. We
define a group G by the image of £ under the exponential map: G := exp(L).
Our interest is the relation between £ and G under the exponential/logarithm maps.

What kind of automorphisms will appear corresponding to D7
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5 Image of a

One can regard k[[a]] as a subalgebra of R" = k((a,b)) generated topologically by a. Note
that the derivation Dy defined in Section 4 can be restricted to a derivation on k[[a]]. We
express it by same letter D;. In this section we introduce a formula proved by L. Comtet in
1973, which gives an explicit expression of D(a). This result gives an expression of ePs (a).

Theorem 1 (Comtet [3]). Let g be an arbitrary differential function. Define the functions
{Tnu}jy forn > 1 by (g(a)%)” =3, Tn,l(d%)l. Then we have

g(a) T g(a)*)
Tng == > [MG+1-k = —&j) o (1)
ki+-+kn_1=n—1, j=1 J
(1<Vi<n—1)
where g(a)*i) means the kj-th derivative function of g(a) in a.
Example. For simplicity put g = g(a).
do ,.d d
(95,)" =99'(5) +9° (o )
d 3 2 1 d d 3
(95.)" = (9(g")* + 979" (- )+3gg(d ) +9° ()%
d d
(9--)" = (9(¢")* +49°d'd" + ¢°9") ()
da da
d d d
+(79%(9")* +49°9")(7-)* +69°9' () + g* ()"
da da da

The numbers appearing in coefficients in {7}, ;} relate to the number of ‘rooted tree’ and
the theory of ‘species’ in combinatorics. See [1, 4, 8] for this connection.

Note that Dy = Af(a)a4: on k[[a]]. Hence we can use Theorem 1 to compute D7%(a) by
putting g(a) = Af(a)a.

Corollary 1. For f € L := XKk[[X]] and n > 1, we have

n—1 .
DfMa) =Tpy = N"f(a)a ) [HG+1—k = =) ——,
kit tkn_1=n—1, j=1 7
k1t tk; <i,0<ki,
(1<Vi<n—1)

where Ty, 1 is the element defined in (1) in case of g(a) := Af(a)a.
Proposition 2 ([6]). For f € L = Xk[[X]], put h =ef € G =1+ Xk[[X]]. Then we have
eP! (a) = up(a)a,

where up(a) € 1+ ak[[a]] is defined by the equation up(a)a =}, % with Tp1 = a.

Remark. In general, we do not have a simple expression of up(a) by means of elementary
functions. See [6] for such examples and some analytic expression of uy(a) in terms of the
solution to a differential equation when k¥ = R. In case of f(X) = X™, we can show the

explicit form: up(a) = (1 — )\mam)_%.
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6 Image of b

In this section, the automorphism exp(Dy) is detected explicitly.

Definition 3 ([5, 6]). For h € G = 1 + Xk[[X]] and for «, 8,7,d and X € k, we define an
automorphism A, = Ay (X, 8,7,0) € Aut!(R?) by the following action on generators:

An(a) = up(a)a,  An(b) = AxB;"

where up(a) is defined in Proposition 2 in Section 5 and

Ap = vp(a)Pte [b + M(aa - 6b)]

= on(@)? | (vn()° ~ vn(@))ea — ('vn(a)* — evn (o)’

By = un(@) 0 1+ 2 L gy

wa

!

)b fw 2)

— vn(a)° 98] fe (3)

= oy (@) [(evn @) — p(a)®) — 2=

where vy, (a) := up(a)/* € 1+ ak[[a]] if A # 0, vy(a) := h(a) if A = 0. € and ¢’ are roots of
the equation T? + (8 +v — A\)T + ad = 0 and w = ¢ — £'. Since the each expression (2), (3)
is symmetric in € and €', Ay, € R" and Bj, € (R")* (the unit group of R").

Theorem 2 ([5, 6]). For any f € L, we set h = e/ € G. Then we have
Ap = exp(Dy).
This theorem says the following diagram commutes:

L 25 G
n| B
L—"5g
where £ and G were defined in Section 4.
Corollary 2. For m > 1 and any parameter s € k, exp(sDy,) € Aut'(R") is determined by
e*Pm(a) = (1 — shma™) Y™,

Be [b+ (1 — sAma™)xm — 1

e*Pm(b) = (1 — shma™) >m

(a — 6b)]

—w
(1 — sAma™)xm — 1

wa

yte

-1
(ea — Jb)] (1 —sAma™)™ xm,

x[l—}—

where €,¢', and w are defined in Definition 3. When X\ = 0 we regard (1 — s)\mam)*l/’\m as
e

This corollary is a special case of the theorem for f(X) = sX™.
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7 Sketch of proof

In this section we sketch a proof of Theorem 2. We can find an interesting structure in the
proof! For the detail, see the reference [6].
To prove the theorem, it is enough to show that for any parameters s, s’ € k,

(i) LAps|s—0=D; forh=¢,
(i) Apese = Bps Ay

because exp(sDy) satisfies the same conditions and these conditions uniquely determine the
corresponding automorphism. (ii) says that Ays is a one-parameter subgroup. (i) says that
the tangent vector of the subgroup at s = 0 is Dy.

We have %’U}ls (a)|s=0 = Af(a), because e*Pf(a) = ups(a)a is true by Proposition 2.
For (i), it is clear that %Ahs (a)]s=0 = d%uhs (a)als=0 = Af(a)a = Dy(a). For vy(a), when
A # 0, d%vhs(aﬂs:o = %(uhs(a))l/)‘\szo = %)\f(a) = f(a). When A\ = 0, %’l}hs(a”szo =
d%hs(a)\szo = f(a). Using this and (2) and (3), one has

2 Alco = (B +)f @b+ f(@)(ea — 2b) = af @)+ B (@),

Using these we have

LN (B)lszo = af(@)a + Bf ()b + 15 (a) + 361Dy = D, (b).

ds a

om0 = _@(ea —0b) + (v +€)f(a) = vf(a) + 5@”-

To prove (ii), we will look at carefully a Lie algebra structure (resp. a group structure) on
L (resp. G).

Recall that L = Xk[[X]] and G = 1 + Xk[[X]] relates bijectively via the exponential-
logarithm maps. We have defined the Lie algebra (£, , ]) in Section 4 generated topologi-
cally by the derivations Dy for f € L. Furthermore G is the image of £ via the exponential
map: G := expL. It can be shown (G,-) forms a group under the usual composition of
maps. See below about this group operation in term of Baker-Campbell-Hausdorff series.

First we introduce a new Lie algebra structure on L = XEk[[X]], and a new group
structure on G = 1 + Xk[[X]] which make D and A a Lie homomorphism and a group
homomorphism, respectively.

Proposition 3 ([6]). For f € L, put f* = X% (Euler operator). Then for f,g € L, the
bracket operation defined by [f,gle := A(fg® — gf*®) makes L a Lie algebra (L,[ , |s). Then
D:L — L (f = Dy) gives a Lie algebra isomorphism i.e., [D, Dg] = Dy,

Proposition 4 ([6]). For g,h € G, define a product * in G by gxh := exp Hq(log(g),log(h))

where H'(fa g) = f +g + %[fa g]' + 11_2([f[f7 g]']' - [g7 [fa g]']') +e 7;3 deﬁned by the Baker—
Campbell-Hausdorff series. Then (G,x*) forms a group.

The proofs of Proposition 3,4 are in [6]. One can show that (L, H,) forms a non-abelian
group unless A = 0, which is called Hausdorff group (cf. [2]) associated to the Lie algebra

(L, o)

Theorem 3 ([6]). The map A satisfies the homomorphism property, namely for any h,h' €
G, we have

Apa = Ay
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(ii) is proved from Theorem 3 by applying k = h* and k' = h* | since we have h® + h* =
hsts'. For the proof of Theorem 3 we will show a lemma.

Lemma. For any h,h' € G, we have
Ap(Ap)Bh = Apanr (4)

Using this lemma one can show Theorem 3 by checking the values on generators of
both-hand-sides. The images of a has checked in Proposition 2. For b, by using (4) and (5):

Ap(Ap (b)) = Ap(Aw By,') = Ap(Ap) Ap(Bp) ™"
= (An(Aw)Br) (A (Br)Br) ™" = Apaw By = Apanr ().

This completes the proof of Theorem 2.
For the proof of Lemma, first we show the following:

Uputy (@) = up (up(a)a)up(a). (6)

One has ePfePs = ePHe(£.9) by the definition of H,. Put f = log(h),g = log(h') € L. From
Proposition 2 we have

P! (eP9(a)) = eP/ (up (a)a) = up (e’ (a))eP’ (a) = up (un(a)a)up(a)a,
ePHe1.9) (a) = U na(r.9)(@)a = upen (a)a.

Comparing both equations, we get (6). For simplicity we write vy, (resp. up,) instead of vj,(a)
(resp. up(a)). Hence we can write

Ap = v,/_f [(vf, — v o — (e"05 — 602’)1)} Jw,
By — B—=A € 1 e U’EZ - U’EZ'
h =), [(wh—evh)—Téb]/w

and Ap(a) = upa, Ap(b) = AhB,:I. Next we prove that F := Ap(vp) = vh*h/'u,:l. By (6),
when A # 0 we have

F = Ap(ow) = An(u)) = (An(un ()7 = (up (up(a)a))/

/A _ 1)1/,\

= (upary (@)up(a) ") = (upapuy = a0y

When X\ = 0, note that Ay is the identity map on k[[a]] and h(a) % h/(a) is usual product
h(a)h'(a). Hence we have F = Ap(vy) = Ay (b (a)) = h'(a) = h(a)h' (a)h(a) ™ = vpapvy *
Using this we obtain

An(An)Bp = Ay, (u,fj, (v — vi)oa — ('vf, — gu;’,)b]) Bh/w
= FA[(F® — F*')aln(a)By — (€'F° — eF*) Ay Jw
vi = v

= o [ (7 = P yoany (e, — ) — 5 gn)

— (&'FF — eF){(vf, — vf )oa — ('}, — gu;')b}] / W2
o’ [{(Ff — F¥) (e} — €'vf ) — (6'FF — eF*) (v} — vf ) }aa
— {(FF — F) (v, — v )ab — (€ F* — eF¥)(e'vf, — su,i’)}b] / w2

= Uf*h’ [(Ulsz*h’ - 'U,il*h,)aa - (5lvls7,*h’ - Evlszl*h’)b] /w = Ah*h"

The proof of (5) is the almost same as (4). Thus we conclude the lemma.
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8 Non-abelian cohomology

In this section we show that the elements uj and By, defined in Proposition 2 and Definition
3 respectively, satisfy the 1-cocycle condition for some non-abelian group cohomology.

We have proved that G = 1 + Xk[[X]] forms a group under the product *, and acts on
R by Ay, as algebra automorphisms. In particular G acts on (R")™ (the unit group of R")
from left as group automorphisms.

We recall the definition of (non-abelian) group cohomology. Let G be arbitrary group
for a while, and N a group which G acts from left by group automorphisms: G x N — N,
(h,n) — hn. Both G and N can be non-abelian. The set of 1-cocycle is defined by

ZYG,N) :={v:G — N|uv(hh') = (hv(h))v(h)}.

If N is a non-abelian group, Z!'(G, N) does not have natural group structure. Two cocy-
cles v,v" are cohomologous, v ~ v, if and only if there exists n € N such that v(h) =
(hn)v'(h)n~! for all h € G. The quotient set is the 1-st cohomology of G' with coefficient
N, is denoted by H!(G, N).

Let us return to our situation: G = 1 + Xk[[X]] and N = (R")*. By (6) and (5), we
have the following:

Proposition 5 ([6]). The u: h — up(a) and B : h — By, satisfy the 1-cocycle conditions,
that is u, B € Z'((G, %), (R")™).
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