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1 Introduction

In [11], Imai discovered how one can apply the spectral theory on the upper half-plane to
Siegel modular forms of degree two. We generalize this method to Hermitian modular forms
with actual applications. More precisely, we present three main results: (1) A 3-dimensional
analogue of Katok-Sarnak’s correspondence; (2) An analytic proof of a Hermitian Saito-
Kurokawa lift by means of a converse theorem; (3) An explicit formula for the Fourier
coefficients of a certain Hermitian-Eisenstein series.

Our main object is to study a unimodular invariant Fourier series F'(Z) on the Hermitian
upper half-space Hy = {Z € My(C);(Z —'Z)/(2i) > O} of degree 2. Recall that the
so-called hermitian imaginary part Y = (Z — tZ)/(2i) of Z € Hs is the set Py of all 2
by 2 positive definite hermitian matrices and that it can be parametrized by determinant
and 3-dimensional hyperbolic space H?. In view of this fact combined with the unimodular
invariance and the principle of analytic continuations, studying F'(iY") (Y € P») as a function
on SLy(0)\ H? by the spectral decomposition turns out to be an useful approach in order
to study F(Z). Here O is the ring of integers of an imaginary quadratic field. A certain
integral formula describes the spectral coeflicients by the associated Koecher-Maass series.
In some actual applications, an important result is Katok-Sarnak type correspondence for
automorphic functions on H?.

2 Katok-Sarnak type correspondence

We refer to [6] as a basic reference for automorphic functions on 3-dimensional hyperbolic
space. Let K = Q(i) be the Gaussian number field, O = Z[i] the ring of all integers,
D=1 = (2i)7'O the inverse different and xx = (=2) the Kronecker symbol of K. Let
H = {P = z +rj;z € C,r > 0} be 3-dimensional hyperbolic space. An automorphic
function on H? is any function ¢ (P) on H? satisfying the following three conditions.

(G-i) U(YP) = U(P) for all v € SLy(O).

(G-ii) U(P) is a C?-function on H® with respect to z,y,r, where P = x + yi +rj € H?. It
satisfies a differential equation —AU = AU with some XA € C, where A = 7"2(3‘9—:822 +

9? 9? 9
a7 T orz) —Tor

(G-iii) U(P) is of polynomial growth as r tends to oc.

*The author is supported by JSPS Grant-in-Aid for Young Scientists (Start-up) 21840036.

23



See [6] p.3 for the action of SLo(C) on H?. As an example, there is an Eisenstein series
E(P,t) defined for R(¢) > 1 by

1 r 1+
E(Pt) = -
(P1) 4 Z (|cz+d|2+|c|2r2) ’

c,deO
(¢, d)=0

where (c,d) is a fractional ideal generated by c,d. E(P,t) has a meromorphic continuation
to the whole complex ¢-plane and it is holomorphic for R(¢) > 0 except for a simple pole at
t=1.

Denote by Ly = {T' = (%%);a,d € Z,b € D'} the set of all half-integral hermitian
matrices of size two. Put Li = {T € Lo;T > O}. The group SLQ(O) acts on each set
by T — [U]T = UT 'U. To any positive definite T = ( ) € L , we associate the point
Pr = b/d + (V/detT/d)j € H>. While to any indefinite T = ( ) € L9, we associate the
geodesic hyperplane Sp = {P =z +r1j € H?;a + bz + bz + d(|z|2 +7?) = 0}. Moreover, we
denote by E(T) = {U € SL2(O); [U]T = T} the unit group of T'. Recall that P,i;r = oPr
and S,y = oSt for 0 € SLy(C). The following is a 3-dimensional analogue of Katok-
Sarnak [12] and Duke-Imamoglu [5].

Theorem 1. Let U(P) be a spectral eigenfunction on H? such that —AU = (1 — p?)U with
some complex number p. In the case of cusp eigenfunctions, there exists a real analytic cusp
form ¢(1) on Hy = {1 = u+iv;v > 0} of weight —1, character xx with respect to I'y(4),
that is

o) = xi(@ler + dller + d7(r), 7= (4 ) € Tota)

such that the Fourier ezpansion ¢(1) = > ojcz bu(OW_sgny/2, wy2(dlllv)e(lu) satisfies

bu(l) =171 > U(Pp)/RE(T) for 1> 0, (1)
TESLy(ON\LT, 4det T=1
bu(l) = Cyll) ™! > / U(P)do for 1 <0
TESLy(O\La, 4det T—1? EINST

with a constant Cy, where do is hyperbolic measure on St and W, g(v) is the usual Whittaker
function. In the case of non-cusp eigenfunctions, there exists a real analytic Fisenstein series
o(7) of weight —1, character xx with respect to T'g(4) whose Fourier coefficients are given
by the same formulas for | such that all of T € Lo with 4detT = [ are not zero-forms.
Moreover ¢(T) satisfies the plus condition, that is, if xx(l) = 1 then by(l) = 0 for any
integer 1.

The proof is based on [7], [17], [19], [20]. The measure do is given explicitly in [7], [17].

3 Hermitian modular forms

Let U(2,2) = {M = (48) e My(C); '‘MIM =J}, J = (%2 BI;). This group acts on
the Hermitian upper half-space Hy = {Z € M,(C);(Z —*Z)/(2i) > O} by (4B)Z =
(AZ + B)(CZ + D)~!. We denote by Ty = U(2,2) N M4(O) the full Hermitian modular
group of degree two. For any natural number N, the congruence subgroup F(()Q) (N) is defined
to be TY/(N) = {y = (AB) € T;C = 05 (mod NO)}.
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For k € Z let w be a character on O* such that w(i) = i~* and % a character on
(Z/NZ)* such that 9(—1) = (—1)*. Then put p(ed) = w(e)y(d) for e € O*,d € (Z/NZ)*.
Using this p, we define a character on P(()Z) (N) by p(y) = p(det D) fory = (A B) € I‘(()2)(N).
Note here that det D € Z U 1Z for ( é g) € I'y. For an even natural number k, denote by
M k(l"(()2) (N), p) the space of all holomorphic functions f(Z) on Hy which satisfy

162) = o) dt(CZ + DI 1(2), 7= (g ) €T

Since k is even, the condition (A’) in [14] p.92 holds, namely the character p is trivial on the
principal congruence subgroup of level N. Any f € M (F(()Q) (N), p) has a Fourier expansion
f(Z) = Y orer,>0 AT, fle(tr(T'Z)), where the sum is extended over all half-integral semi-
positive definite hermitian matrices of size two. As in Theorem 1, Ly denotes the set of all
positive definite T € Ly. There exists a constant C such that |A(T, f)| < C(det T)* for all
T eLj.

Recall that the so-called hermitian imaginary part Y = (Z —'Z)/(2i) of Z € Hs is a
positive definite hermitian matrix of size two. Denote by Po the set of all positive definite
hermitian matrices of size two and by SP, the determinant one part of Py. We identify
SP, with 3-dimensional hyperbolic space H? by

2 4 2),.—1 -1
W = ((‘Z| ;‘:1)7“ zrr_1> S Py — 241
Any automorphic function U(P) on H? gives a function on Py by setting U(Y) = U(Py),
where Py corresponds to (det Y)~'/2Y | in other words Y € P, is identified with Py € H?
by
Y = (% Z) — Py =b/d+ (VdetY /d)j.
Put moreover U(Y) = U(Y1). Recall that Py = oPy for Y € Py,0 € SLy(C). Note
that tr(7X),tr(TY) € R for hermitian matrices T', X, Y.
Take a Fourier series

F(Z)= Y A(T,F)e(tr(T'Z)), Z € H,. (2)

TeLy
Here we assume that A(T, F) = A([U]T, F) for any U € GLy(0) and A(T, F) = O((det T)*!)
with a positive constant d;. The series defining F(Z) converges absolutely and uniformly

in any domain Y > Yy > O and bounded there. Moreover there exist positive constants
C1,C5, 03,1 such that

IF(Y)| < (C1(det V)~ 4 Cy(det V) ~H)e Bt )V -y ¢

The needed reduction theory to prove this is presented in Theorem 4.12 [14] p.35.
For any Y € Py put Y = uW with u = (detY)'/2 > 0 and W € SP,. Assuming R(s) to
be sufficiently large, set

Fy(P) = / F(iuW)u**"'du, P = Py.
0

By the assumptions on the Fourier coefficients, this satisfies Fy(yP) = Fy(P) for all v €
SLo(O). It is easy to see that

Fy(P) = (2m)>°T(2s)fs(P), fs(P) = Z A(T, F)tr(TW) % (3)
TeLf
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and that the series defining fs(P) converges absolutely and uniformly on H? x {s = o +
it; o1 < o} with sufficiently large o;. These are bounded on H? x {s = o +it;01 < 0 < 03}
with sufficiently large o1. Taking Stirling’s formula into account, we can get F(iuW) back
by Mellin inversion from F(Py), that is,

1

F(iylﬂw) == 2F5(P)y_5ds, o >>0.
2711 JR(s)=0

Using Ae*%“? = (—27u){3B — 2nu(B? — 4det T)}e ?™8 with B = tr(TW), we can
deduce F;(P),AFy(P) € L*(SLy(0) \ H?) for sufficiently large ®(s). Using Theorem 3.4
(3) [6] p.267, we have the spectral decomposition of Fy(P) (R(s) >> 0)

~ — 1 o0 —
Fy(P) = D*(F,Upm, $)Uhn(P) + = D*(F,E( ,it),s)E(P,it)dt, (4)
m

—00

where {U,} consists of the constant function 7//2(k(2) and an orthonormal system of
cusp eigenfunctions, and the spectral coefficient D*(F,U, s) with respect to U(P) is given
by

~ — _ dzdydr

D*(F,U,s) = / Fy(P)U(P)

5 P=(z+yi)+rjecl’
f'

where F is a fundamental domain of SLy(O) \ H?. As we will see in Proposition 1 below,
this is the so-called Koecher-Maass series twisted by U (P) (cf. [16], [11] in the Siegel case).

For f(Z) = Y rer,>0 AT, fle(tr(TZ)) € Mk(F(()Q) (N),p) and a spectral eigenfunction
U, we define D*(f,U,s) by D*(F,U,s), where F(Z) = ETGL; A(T, f)e(tr(T'Z)) (the non-
degenerate part of f).

Proposition 1. (1) IfU(P) has an eigenvalue 1 — u? of —A, then

~

A(T, F)U(T)

D*(F,U,s) = m(2m) T (s = 1/2+ p/2)T(s = 1/2 = u/2) > (T)(det T)*

TESLa(O\LF

for sufficiently large R(s), where the summation extends over all T € L; modulo the action
T — [UIT =UT U of the group SLs(O) and e(T) = {U € SLy(O);[U|T = T} is the order
of the unit group of T.

(2) For f € Mk(]_"((f) (N),p) and a spectral eigenfunction U, D*(f,U,s) has a meromorphic
continuation to all s. It satisfies a functional equation

N*D*(£,U,s) = (~DFN*="D* (g, U,k - s),
where g(Z) = N~ *(det Z)*kf(—(NZ)™1).

We note here that Ibukiyama [10] established a general theory of Koecher-Maass series
with Grossencharacter (suitable automorphic forms) associated with modular forms on tube
domains including convergences of the series, determination of the gamma factor, meromor-
phic continuations and functional equations.

If the Fourier coefficients A(T, F') satisfy a Maass type relation, then D(F,U,s) is a
convolution product of two Dirichlet series (cf. Satz 3 [3] and Lemma 3 [5]).

Proposition 2. Let x be a multiplicative function on N. Suppose that there exists a function
a on the set of all natural numbers satisfying

AT, F) = Y x(d)d*a((4det T)/d?),
dle(T)
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where e(T) = max{q € N;q~'T € L3'}. Then for any automorphic function U on H® whose
eigenvalue of —A is 1 — u?, we have

a(l)bs (1)1

D*(F,U,s) = n(2n) " *T(s — 1/2 + 5/2)T'(s — 1/2 — 7/2)4° L(2s — k + 1, ) Z 7s

>1

for sufficiently large R(s), where by(l) is as in (1).

4 Hermitian analogue of Saito-Kurokawa lift

As discovered by Duke-Imamoglu [5] in the case of the Saito-Kurokawa lift, Theorem 1 and
Proposition 2 allow us to analyze each spectral coefficient of F(1Y") by the Rankin-Selberg
method. We can reprove a Hermitian analogue of Saito-Kurokawa lift by means of a converse
theorem. This lifting was discovered by Kojima [13].

Suppose that a natural number k is divisible by 4. Take a cusp form of weight k& — 1,
character xx on I'g(4) belonging to the plus space in the sense of Kojima [13]

g(r)= Y. cl)e(lr) € Sp-1(To(4),xk), T € Hi. (5)
21,3 (D)1

Put a*(I) = ¢(l)/(xx (=) + 1) and define a function on Hy by

F(z)y=Y_ | Y d'a*((4detT)/d?) | e(tx(T2)). (6)

TeL \dle(T)

Theorem 2. F(Z) is a modular form of weight k on the full Hermitian modular group
Ty = {y € My(O);'7Ty =T}, T = (P 62)-

An analogous converse theorem to the Siegel case given in Theorem 2 [5] is the following.

Proposition 3. Suppose that k is divisible by 4 and take F(Z) as in (2). If D*(F,U,s)
and D*(F,U, s) are entire and bounded in every vertical strip in s and satisfy D*(F,U,s) =
D*(F,U,k — s) for any spectral eigenfunction U on H?, then F(Z) is a Hermitian modular
form of weight k on I's.

Proof. We follow Ibukiyama’s proof [9] of Theorem 2 [5]. Put B = tr(TW). Using the
identities AB = 3B and 72((B;)? + (By)? + (B;)?) = B? — 4det T, we have

A?e7?mB — (_2mu)e ™ B{9B — 27u(8(B? — 4det T) + 15B?)
+ (27u)?10B(B? — 4det T) — (27u)®(B? — 4det T)?}.

It follows that A2f(P) is bounded on H? x {s = o + it;o; < 0 < oy} with sufficiently
large o1 and that A%f,(P) € L*(SLy(O) \ H?), where f; is as in (3) (see Proposition 2.5
[11] p.910 and we refer to Theorem 4.12 [14] p.35 for the reduction theory in the Hermitian
case). Suppose that —AlUy,, = A\plUp,. Since —A is symmetric (Theorem 1.7 [6] p.136), we
have (fs,Up) = A, 2(A%f,,Uyy,) for cusp eigenfunctions U, where ( , ) denotes the inner
product on SLy(O)\HB, see (1.2) [6] p.133. Using an elementary inequality about geometric
and arithmetic means, the above relation and Schwarz’ inequality, we deduce that

|(Fy, Un)Uim (P)| < |(21) 2T (28)[2 {2 (A Fs, A2 Fy) + A U (P)?).
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Then Corollaries 5.3 and 5.5 [6] p.182 implies that the sum on the right-hand side of (4)
converges absolutely and uniformly in L X {s = o +it;01 < 0 < 09}, where L is a compact
subset of H® and o, is sufficiently large, and it is of rapid decay as |t| — oo by Stirling’s
formula. We also note that there exists a positive constant d, such that E(P,it) = O(|t|%)
as [t| = oo. Accordingly, we can apply Mellin inversion of (4) term by term.

The standard procedure (employing Stirling’s formula and the Phragmen-Linderdf the-
orem, shifting the path of integration, using the functional equation) gives F(iu~'W™!) =
uw?*F(iuW) and F(—(iY)™!) = det(sY)*F(iY). In fact, D*(F,U,s) is the spectral coeffi-
cient of Fy(Py-1) with respect to U(Py). In view of Lemma 1.7 [14] p.79 and Lemma 1.6
[14] p.48, we complete the proof of Proposition 3. O

Proof of Theorem 2. By the Rankin-Selberg method, we get an integral representation of
D*(F,U,s). This integral representation allows us to check the assumptions in Proposition
3. Note here that by (1) = by(l)- O

5 Hermitian-Eisenstein series

5.1 A main result

Another example is an application to a Hermitian-Eisenstein series. Theorem 1 and Propo-
sition 2 make it possible to determine every spectral coefficients of the non-degenerate part
of a certain Hermitian-Eisenstein series. Using a Maass lift, we can construct a Hermitian
modular form with the same spectral coefficients. Consequently, the Hermitian-Eisenstein
series coincides with this image of the Maass lift. This fact yields an explicit form of the
Fourier coefficients of the Hermitian-Eisenstein series.

Suppose that & > 4 is even and N is a natural number. Denote by I's the full Hermitian
modular group and put 1“&? = {y € '9; C = O2}. A Hermitian-Eisenstein series of weight
k, degree two and character p on P(()Q) (N) is defined to be

E@(z) = 3 p(det D)det(CZ + D) %, Z ¢ Hy.

(4 B)er@\ri ()
It has a Fourier expansion indexed by semi-positive definite T' € Lo. If N = 1, some explicit
forms of the Fourier coefficients are obtained by Krieg [15] and Nagaoka [22].

Theorem 3. Suppose that N > 1 is a square-free odd natural number and the above 1)
is a primitive Dirichlet character mod N. The T-th Fourier coefficient of the Hermitian-
Eisenstein series for any positive definite T' € Lo is given by

@, _ (=2mi) 7N () 1o
A(T,By)) = Wd; P(d)d* e ((4det T)/d?),

where TN () = Ef,vzl P(r)e?™ /N s the Gauss sum, T'(s) is the gamma function, L(s,v) is
the Dirichlet L-function of v, and e°(t) has the form

P2kphol otk - 1)

eX(t) = - ' _ Yotk —1) Co(®)-
P Zkl_‘(k —_ 1) L(k - ].’XK,(/)) Odd pgme p pﬂ/} prime p\N w7p
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Here for a prime q and a natural number l; such that q'e is the exact power of q dividing t,

1= (xx(P)y(p)p* *)lr*!

'Ypﬂ/)(ta k — 1) - 1 — XK(p)’(,b(p)pQ_k ) (p 7£ 2),
1, forly =0,
UL RS SR e

% (1) _ ¥y () b+ 177 (4 obp Voo
Cz/;,p(t) = ¢p(4)WXK(p) r ¢p(t/pp)pp7p(¢p)a

where T, = p;l r)e2™ /P s the Gauss sum, are the primitive Dirichlet charac-
p\¥p r=0¥p D
ters mod p so that ¢ = Hp”-me p|N¢p and vy = Hpm-me al(N/p) Pq.

In the following subsections, we give a sketch of the proof.

5.2 Hermitian Jacobi forms

In this section we recall some basic facts on Hermitian Jacobi forms. We refer to [8], [23]
for more details. Let Hy = {r = u + iv;v > 0} be the upper half-plane. The action of
SLy(R) on Hy is denoted by (2%)7 = “tb. Put U(1,1) = {eM;e € 5', M € SLy(R)}. For
integers k£ and m, there is an action of the Jacobi group U(1,1) x (C2 x S') for functions ¢

on H; x C? given by

(z 4+ A7+ p)(w + A7 + )
cT+d
e(z+ AT+ p) €(w+ A+ 1)
cr+d cr +d ’

Blkmé (T, 2,w) = (et + d)Fem (‘C N £ 4 Aw)

x s (MT,

where € = (e(2 ), (A p),5) € U(L,1) x (C” x §"), (1, 2,w) € Hi x C” and €™ (z) = >

For a square-free odd natural number N, denote by Fgl) (N) the congruence subgroup

rg”(zv):{e(Z Z);GEOX,(Z Z)ESLQ(Z),CEO(modN)}.

Let w be a character on O such that w(i) = i~* and ¢ a primitive Dirichlet character
on (Z/NZ)* such that (—1) = (—1)*. Put p(ed) = w(e)y(d) for e € O*,d € (Z/NZ)*.
Then p(e(2 %)) = p(ed) is a character on I‘(()l)(N). For natural numbers k£ > 4 and m, we

denote by Jk,m(I‘(()l)(N ), p) the space consisting of all holomorphic functions ¢ on H; x C?
satisfying the following two conditions.

(J-9) Blrmé = p(v)¢ for all € = (v, (A, ) € T7 = T§(N) x O2.
(J-ii) For each M € SLy(Z), ¢|k,mM has a Fourier expansion of the form

¢|k,mM(T’ Z, UJ) = Z M (na a)qn/ugixcg’

neZ,aeD-1
nm—vN (a)>0

where ¢# = 287 (¥ = Mz (& = 2™V and v is a natural number depending on

M.
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The Maass lift M from the space Jk,l(l"(()l)(N), p) to the space Mk(Fg2) (N), p) is defined

as follows. For ¢ € Jk,l(I‘(()l) (N),p) and any natural number m, we define the operator V,,
by

¢|k,1Vm(Taz7w)
k-1 k[ _cmzw mz muw
—m > ¥(a)(cr + d) e( CT+d)¢<MT,—CT+d,CT+d),

M=(2 b)ero(N)\M; (m)

where M3 (m) = {M = (¢%) € My(Z);det M = m,c =0 (mod N), (a, N) = 1}. It is easy
to see that @[ 1V}, transforms like an element in Jk,m(l"(()l)(N ), p). Moreover, put

do(r) = § LLBILE 7) ’“” L3 [ v o 0.0,

( 2ms)k w1 \am

Since 1) is primitive, this is an Eisenstein series on I'g(N) for the cusp oo.

Proposition 4.

M7, 2))im dalr) + 3 sVl 2 wlelinr’) € M (), ).

w T
m>1

5.3 Hermitian Jacobi Eisenstein series

In this section we give some Fourier developments of Hermitian Jacobi Eisenstein series
on IV = I‘él) (N) x O? associated with the cusps 0 and oco. With the previous notation,

suppose moreover that N > 1 is square-free odd. For G C Fgl)(l) x O?, put Go =
{(e(§7%),(0,1)) € G}. For any cusp & of T'g(N), take g € SL2(Z) such that g(co) = k. The
Hermitian Jacobi Eisenstein series of weight k£ and index 1 associated with  is defined by

El’g,l,p('r,z,w) = Z p(gil’Y)l'k,l'Y-
79T 971 ) oo \gT
One easily has E | |17 = p(7)Ef, , for all v € I'/. We choose g = I (resp. g = (% }))

so that g(oc) = 0o (resp. g(oo) = 0)
The Fourier coefficients of Ef ; ; for k € {00,0} can be computed in the same way as in
Theorem 2.1 [22]. Define 0,(7, z,w) by

Oa(T, 2, w) = Z qN C1CQa (7)
Bea+O

where qﬂ — e27rzﬁ’r’ Cla — e27rzaz’ Cge — 627rzaw'

Proposition 5. For k € {00,0} the Fourier development of E]’;,l,p s given by

Ef 1 (1, 2,w) = 8r,0000(T, 2, w) + > e (t)qH N (@A cocE

t>0,acD~!
t=—4N(a) (mod 4)

eX(t) = agat® ?By(t) [ CF(1),  eb(t) = arap(—1)tF By (1)
prime p|N
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Here oy g = 22~k pk=1i=kD(k — 1)7! and di,j is Kronecker’s delta,

_ 72,’¢(t’k - 1) _
By(t) = L0k = Toxncd) I wer-0),

odd prime p
where gy (t, k — 1) and C7°,(t) are as in Theorem 3.

Since N is square-free, {oo0,0} J{1/p;1 < p < N,u|N} is a set of representatives of
non-equivalent cusps of T'g(N). As elements in SLy(Z) transforming oo to the cusps, we

take
0 -1 1 o

where integers « and S are chosen so that NG/u — au = 1. For the cusp , we will also use
symbols o, instead of (8).

Proposition 6. (1) The Fourier development of EJ | p|k,1‘70 is given by

Elg,l,p'k,lo'() (Ta 2, ’LU) = 00 (Ta 2, UI) + Z ag(Nt)q(t+4NN(a))/(4N) Clacga
t>0,acD!
t=—4ANN(a) (mod 4)
a,g(Nt) = OtkAXK(N)tk_QBE(Nt) Cgp(t) (9)
prime p|N

Here the notation is the same as in Proposition 5.
(2) For k = 1/pu with 1 < p < N dividing N, the coefficient functions HE(T) of the theta
exTPansion

E271,p|k,10,§(7,z,w): Z HE(1)0u(T, 2, w) (10)
a€D-1/0

are of rapid decay as ST tends to oo.

5.4 Proof of Theorem 3

We can determine an explicit form of the Koecher-Maass series associated with Hermitian-
Eisenstein series by a method similar to [21]. For a spectral eigenfunction ¢ corresponding
to the eigenvalue — (1 —pu?) of A, the Koecher-Maass series of E,(f% has the form (R(s) >> 0)

Tk,24_k+2N_k7T1_257'N (E)

a4 L(k, )
2, 2 (1)b (1)1

xT(s—1/2+@/2)T(s = 1/2 = G/2)L(2s — k+ 1,4) > S
=1

D*(E) U, s) =

where 75, 9 = (—=1)%(2m)2*~1{2D'(k)T(k — 1)} ! and a4 4 is as in Proposition 5.

Set P
—9mi

F=p® _ 200 ) pe 5
' N*T(k)L(k, ) "
Applying the Siegel operator @ defined by ®F(r) = limy,400 F(% 9) € My(To(N),p),
we have &F = 0 so that the Fourier expansion of F(Z) has only the terms indexed by L.
Moreover, D*(F,U, s) = 0 for any spectral eigenfunctions Y = U,,, E( ,it). Hence F(P) =0
in (4) and so F(Z) = 0 by Mellin inversion and the principle of analytic continuations
(Lemma 1.6 [14] p.48). This completes the proof of Theorem 3.
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