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In my talk in the “3rd Fukuoka Symposium on Number Theory” I reported on the
recent progress I made in collaboration with Akio Tamagawa in the study of the anabelian
geometry of hyperbolic curves over finite fields. Below are the main results I discussed in
my talk.

Let X be a proper, smooth, and geometrically connected curve over a finite field k = kX

of characteristic p = pX > 0. Write K = KX for the function field of X. Let S be a
(possibly empty) finite set of closed points of X, and set U = US

def= X − S. We assume
that U is hyperbolic. Let η be a base point of X with value in the generic point of X. Then
η determines an algebraic closure k̄ of k, and a separable closure Ksep of K. Denote by
U

def= U ×k k̄ the geometric fiber of U , Gk
def= Gal(k̄/k) the absolute Galois group of k, and

by π1(U) the étale fundamental group of U with base point η. Then π1(U) sits naturally in
the following exact sequence:

1 → π1(U) → π1(U) → Gk → 1,

where π1(U) is the étale fundamental group of U with base point η. Also, denote by
X

def= X ×k k̄ the geometric fiber of X, and KX the function field of X. Let GKX

def=
Gal(Ksep/K) be the absolute Galois group of KX . Then GKX

sits naturally in the following
exact sequence:

1 → GKX
→ GKX

→ Gk → 1

where GKX

def= Gal(Ksep/KX) is the absolute Galois group of KX .
According to the anabelian (respectively, birational anabelian) philosophy of Grothen-

dieck (cf. [Gr]) the isomorphy type of U as a scheme (respectively, KX as a field) should
be determined by the isomorphy type of π1(U) as a profinite group (respectively, GKX

as a profinite group). The following result is fundamental in the anabelian geometry of
hyperbolic curves over finite fields.

Theorem 1 (Tamagawa, Mochizuki). Let U , V be hyperbolic curves over finite fields
kU , kV , respectively. Let

α : π1(U) ∼→ π1(V )

be an isomorphism of profinite groups. Then α arises from a uniquely determined commu-
tative diagram of schemes:

Ũ
∼−−−−→ Ṽy

y
U

∼−−−−→ V

in which the horizontal arrows are isomorphisms, and the vertical arrows are the profinite
étale universal coverings determined by the profinite groups π1(U), π1(V ), respectively.
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Theorem 1 implies in particular the following birational version of the Grothendieck
anabelian conjecture for hyperbolic curves over finite fields, which was already proved by
Uchida.

Theorem 2 (Uchida). Let X, Y be proper, smooth, and geometrically connected curves
over finite fields kX , kY , respectively. Let KX , KY be the function fields of X, Y , respec-
tively. Let GKX

, GKY
be the absolute Galois groups of KX , KY , respectively. Let

α : GKX

∼→ GKY

be an isomorphism of profinite groups. Then α arises from a uniquely determined commu-
tative diagram of field extensions:

(KX)∼ ∼−−−−→ (KY )∼x
x

KX
∼−−−−→ KY

in which the horizontal arrows are isomorphisms, and the vertical arrows are the field ex-
tensions corresponding to the Galois groups GKX

, GKY
, respectively.

Theorem 2 was first proven by Uchida (cf. [Uc]). Theorem 1 was proven by Tamagawa
(cf. [Ta, Theorem (4.3)]) in the affine case (together with a certain tame version), and
more recently by Mochizuki (cf. [Mo, Theorem 3.12]) in the proper case. It implies in
particular that one can embed a suitable category of hyperbolic curves over finite fields into
the category of profinite groups via the fundamental group functor. It is essential in the
anabelian philosophy of Grothendieck, as was formulated in [Gr], to be able to determine
the image of this functor. Recall that the full structure of the profinite group π1(U) is
unknown (for any single example of U which is hyperbolic). Hence, a fortiori, the structure
of π1(U) is unknown (the closed subgroup π1(U) of π1(U) can be reconstructed group
theoretically from the isomorphy type of π1(U) (cf. [Ta, Proposition 3.2]). (Even if we
replace the fundamental groups π1(U), π1(U) by the tame fundamental groups πt

1(U), πt
1(U),

respectively, the situation is just the same.) The full structure of the absolute Galois group
GKX

is also unknown, though one knows the structure of the closed subgroup GKX
of GKX

by a result of Pop and Harbater. Namely GKX
is a profinite free group on Card(k̄)-generators

(cf. [Po], [Ha]). Thus, the problem of determining the image of the above functor seems
to be quite difficult, at least for the moment. It is quite natural to address the following
question:

Question 1. Is it possible to prove any result analogous to the above Theorems 1 and
2 where π1(U) (respectively, GKX

) is replaced by some (continuous) quotient of π1(U)
(respectively, GKX

) whose structure is better understood?

The first quotients that come into mind are the following. Let Primes be the set of
all prime integers. Let Σ = ΣU ⊂ Primes be a set of prime integers not containing the
characteristic p. Let C (respectively, Cl) be the full class of finite groups whose cardinality is
divisible only by primes in Σ (respectively, finite l-groups, where l 6= p is a fixed prime num-
ber). Let ∆U be the maximal pro-C quotient of π1(U). For a profinite group Γ, Γl stands for
the maximal pro-l (i.e., pro-Cl) quotient of Γ. Here, the structure of ∆U is well understood:
∆U is isomorphic to the pro-Σ completion of a certain well-known finitely generated discrete
group (i.e., either a free group or a surface group). Let ΠU

def= π1(U)/ Ker(π1(U) ³ ∆U )
be the corresponding quotient of π1(U). We shall refer to ΠU as the geometrically pro-Σ
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étale fundamental group of U . In a similar way we can define the maximal pro-Σ quotient
GΣ

KX
of GKX

and the corresponding quotient G
(Σ)
KX

of GKX
, which we will refer to as the

geometrically pro-Σ quotient of the absolute Galois group GKX
.

Question 2. Is it possible to prove any result analogous to the above Theorem 1 (respec-
tively, Theorem 2) where π1(U) is replaced by ΠU (respectively, GKX

is replaced by G
(Σ)
KX

),
for a given set of prime integers Σ ⊂ Primes not containing the characteristic p?

The first set Σ to consider is the set Σ def= Primes \ {characteristic = p}. In this case we
have the following results.

Theorem 3 (A Prime-to-p Version of Grothendieck’s Anabelian Conjecture for
Hyperbolic Curves over Finite Fields). Let U , V be hyperbolic curves over finite fields
kU , kV , respectively. Let ΣU

def= Primes−{char(kU )}, ΣV
def= Primes−{char(kV )}, and write

ΠU , ΠV for the geometrically pro-ΣU étale fundamental group of U , and the geometrically
pro-ΣV étale fundamental group of V , respectively. Let

α : ΠU
∼→ ΠV

be an isomorphism of profinite groups. Then α arises from a uniquely determined commu-
tative diagram of schemes:

Ũ
∼−−−−→ Ṽy

y
U

∼−−−−→ V

in which the horizontal arrows are isomorphisms and the vertical arrows are the profinite
étale coverings corresponding to the groups ΠU , ΠV , respectively.

Theorem 3 was proven by Säıdi and Tamagawa (cf. [Sa-Ta, Corollary 3.10]). As a conse-
quence of Theorem 3 one can deduce the following prime-to-characteristic version of Uchida’s
theorem (cf. [Sa-Ta, Corollary 3.11]). In the case where Σ def= Primes \ {characteristic = p}
we will refer to G

(Σ)
K as the geometrically prime-to-characteristic quotient of GK .

Theorem 4 (A Prime-to-p Version of Uchida’s Theorem on Isomorphisms be-
tween Galois Groups of Function Fields). Let X, Y be proper, smooth, and geomet-
rically connected curves over finite fields kX , kY , respectively. Let KX , KY be the function
fields of X, Y , respectively. Let GKX

, GKY
be the absolute Galois groups of KX , KY ,

respectively, and let G′
KX

, G′
KY

be their geometrically prime-to-characteristic quotients. Let

α : G′
KX

∼→ G′
KY

be an isomorphism of profinite groups. Then α arises from a uniquely determined commu-
tative diagram of field extensions:

(KX)∼ ∼−−−−→ (KY )∼x
x

KX
∼−−−−→ KY

in which the horizontal arrows are isomorphisms, and the vertical arrows are the extensions
corresponding to the groups G′

KX
, G′

KY
, respectively.
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In a recent work together with Akio Tamagawa we proved the following refined version
of Uchida’s theorem which is stronger than Theorem 4.

Theorem 5 (A Refined Version of Uchida’s Theorem on Isomorphisms between
Galois Groups of Function Fields). Let X, Y be proper, smooth, and geometrically con-
nected curves over finite fields kX , kY , respectively. Let KX , KY be the function fields of X,
Y , respectively. Let GKX

, GKY
be the absolute Galois groups of KX , KY , respectively. Let

Σ = ΣX ⊂ Primes be a set of primes which is kX-large, meaning that the Σ-cyclotomic char-
acter χΣ : GkX

→ ∏
l∈Σ Z

×
l is injective. Let G

(Σ)
KX

(respectively. G
(Σ)
KY

) be the geometrically
pro-Σ quotient of GKX

(respectively. GKY
). Let

α : G
(Σ)
KX

∼→ G
(Σ)
KY

be an isomorphism of profinite groups. Then α arises from a uniquely determined commu-
tative diagram of field extensions:

(KX)∼ ∼−−−−→ (KY )∼x
x

KX
∼−−−−→ KY

in which the horizontal arrows are isomorphisms and the vertical arrows are the field exten-
sions corresponding to the Galois groups GΣ

KX
, GΣ

KY
, respectively.

We can also prove the following refined version of Theorem 3.

Theorem 6 (A Refined Version of Grothendieck’s Anabelian Conjecture for Hy-
perbolic Curves over Finite Fields). Let X, Y be proper hyperbolic curves over finite
fields kX , kY , respectively. Let Σ = ΣX ⊂ Primes be a set of primes which is X-large,
meaning that the pro-Σ representation ρΣ : GkX

→ ∏
l∈Σ GL2g(Zl) arising from the action

on the Tate module of the Jacobian of X is injective (here g denotes the genus of X). Write
ΠX , ΠY for the geometrically pro-Σ étale fundamental group of X, and the geometrically
pro-Σ étale fundamental group of Y , respectively. Let

α : ΠX
∼→ ΠY

be an isomorphism of profinite groups. Then α arises from a uniquely determined commu-
tative diagram of schemes:

X̃
∼−−−−→ Ỹy

y
X

∼−−−−→ Y

in which the horizontal arrows are isomorphisms and the vertical arrows are the profinite
étale coverings corresponding to the groups ΠX , ΠY , respectively.

At the moment of writing this report we do not know if a pro-l version of the above
theorems hold, namely if the above Theorems 5 and 6 hold in the case where Σ = {l}
consists of a single prime integer l which is different from the characteristic p. It is very
important for the anabelian geometry of hyperbolic curves over finite fields to know whether
such a version holds or not.
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