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Introduction

Let Γ be a congruence subgroup of SL(2,R), and Mk(Γ ) the space of elliptic modular forms
of weight k with respect to Γ . For the space Sk(Γ ) of cusp forms, the Riemann-Roch theorem
tells us its dimension if k ≥ 3. One can also compute dim S2(Γ ), because it equals to the
genus of the modular curve Γ\H∗1. However no general methods to compute dim S1(Γ ) are
known, even in the case of Γ = Γ0(N).

On the other hand for a complement space Ek(Γ ) of Sk(Γ ) in Mk(Γ ), we call it the
space of Eisenstein series, the dimension formula is known even in the low weight case. We
shall explain that. Let Γ = Γ (N) be the principal congruence subgroup of level N , P the
set of upper triangular elements in SL(2,Z). First assume k ≥ 3. Then the infinite series

Ek
Γ (N)(z) =

∑

P∩Γ (N)\Γ (N)

(cz + d)−k

converges absolutely and uniformly on H1, and Ek
Γ (N) ∈ Mk(Γ (N)). Moreover we can show

Mk(Γ (N)) = Sk(Γ (N))⊕
〈

Ek
Γ (N)|kγ

∣∣∣∣ γ ∈ SL(2,Z)
〉

C
. (0.1)

As a consequence

dimEk(Γ (N)) = {number of the cusps} =
1
2
N2

∏

p|N
(1− p−2).

For the low weight case, E. Hecke considered in [He] the following series:

Ek
Γ (N)(z, s) =

∑

P∩Γ (N)\Γ (N)

(cz + d)−k|cz + d|−2s,

with s ∈ C. The right hand side converges when 2 Re(s) + k > 2, and it has a mero-
morphic continuation for whole s-plane. If k = 2, then E2

Γ (N)(z, 0) is not holomorphic
in z, however E2

Γ (N)|2γ(z, 0) − E2
Γ (N)(z, 0) ∈ Mk(Γ (N)) for any γ ∈ SL(2,Z). If k = 1

then E1
Γ (N)|1γ(z, 0) ∈ M1(Γ (N)) for any γ ∈ SL(2,Z), but the functions {E1

Γ (N)|1γ | γ ∈
Γ (N)\SL(2,Z)/P} are not linear independent. In both cases we have the same decomposi-
tion formula (0.1), and

dimEk(Γ (N)) =

{
{number of the cusps} − 1 k = 2;
1
2{number of the cusps} k = 1.

In this report, we consider Siegel modular forms of degree 2, and give a dimension
formula of the space of Siegel Eisenstein series.
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1 Notation and setting

We use the following notation.

• Hg = {Z ∈ Mg(C) | tZ = Z, Im(Z) > 0}.

• Γ g = Sp(g,Z) = {γ ∈ GL(2g,Z) | tγJgγ = Jg}, with Jg =
(

0 1g

−1g 0

)
.

• For γ ∈ Γ g, the (g, g)-matrices Aγ , . . . , Dγ are defined by γ =
(

Aγ Bγ

Cγ Dγ

)
.

• Γ g
0 (N) = {γ ∈ Γ g | Cγ ≡ 0 mod N}, Γ g(N) = {γ ∈ Γ g | γ ≡ 12g mod N}.

• The space of Siegel modular forms is defined by

Mk(Γ g(N)) = {f : Hg
hol−−→ C | f |kγ = f, ∀γ ∈ Γ g(N)}

with f |kγ(Z) = det(CγZ + Dγ)−kf(γ〈Z〉), γ〈Z〉 = (AγZ + Bγ)(CγZ + Dγ)−1.

If g = 1 we also requires the holomorphic condition at each cusp.

• Let ψ be a Dirichlet character modulo N .

Mk(Γ
g
0 (N), ψ) = {f ∈ Mk(Γ g(N)) | f |kγ = ψ(detDγ)f, ∀γ ∈ Γ g

0 (N)}.

We consider the following decomposition of the space of Siegel modular forms:

Mk(Γ g(N)) = Lk(Γ g(N))⊕ Ek(Γ g(N)),

with

Lk(Γ g) = {f ∈ Mk(Γ g(N)) | Fourier constant term of f |kγ vanishes for all γ ∈ Γ g },
and assume that Ek(Γ g(N)) is closed under the action of Γ g. Such a decomposition is not
unique but exists, since the action of Γ g factors through the finite group G = Sp(g,Z/N) '
Γ g/Γ g(N). We put Ek(Γ

g
0 (N), ψ) = Mk(Γ

g
0 (N), ψ)∩Ek(Γ g(N)). The aim of this report is

to give the dimensions and generators of the space Ek(Γ g(N)).

2 Siegel Eisenstein series

From now on we assume N ≥ 3. Let P0 = {γ ∈ Γ g | Cγ = 0}, ψ be a Dirichlet character
modulo N such that ψ(−1) = (−1)k. The Siegel Eisenstein series are defined by

Ek
N,ψ(Z, s) =

∑

γ∈P0\Γ g
0 (N)

ψ(det Dγ) det(CγZ + Dγ)−k|det(CγZ + Dγ)|−2s.

The right hand side converges absolutely and uniformly on Hg for 2Re(s) + k > g + 1. If
k ≥ g + 2, then Ek

N,ψ(Z) := Ek
N,ψ(Z, 0) ∈ Mk(Γ 2

0 (N), ψ̄). Moreover

Ek
Γ g(N)(Z, s) =

∑

γ∈P0∩Γ g
0 (N)\Γ g

0 (N)

det(CγZ + Dγ)−k|det(CγZ + Dγ)|−2s

=
2

φ(N)

∑

ψ(−1)=(−1)k

Ek
N,ψ(Z, s),
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here φ is Euler’s function.
When k ≥ g + 2, it is easy to show that we have a decomposition

Mk(Γ g(N)) = Lk(Γ g(N))⊕
〈

Ek
Γ g(N)|kγ

∣∣∣∣ γ ∈ Γ g

〉

C
,

and dimEk(Γ g(N)) = {number of the 0-dimensional cusps of Γ g(N)\Hg}. In particular for
an odd prime number p,

dimEk(Γ 2(p)) =
1
2
(p4 − 1), k ≥ 4.

Now we consider the low weight case. First we know the following fact

Theorem 2.1. The Siegel Eisenstein series Ek
N,ψ(Z, s) has a meromorphic continuation to

whole s-plane.

This theorem is originated by Langlands [La]. There are following questions.

(1) For each Z ∈ Hg, Ek
N,ψ(Z, s) is regular at s = 0?

(2) Ek
N,ψ(Z, 0) is holomorphic in Z?

(3) Calculate the dimension of Ek(Γ g(N)) (or Ek(Γ
g
0 (N), ψ)).

These questions and answers are given by G. Shimura [Sh2], except for (3). Instead of
(3), he considered the algebraicity of the Fourier coefficients. To solve the questions, Shimura
considered the Fourier expansion of Ek

N,ψ|kJg(Z, s). However to solve the question (3), we
have to know the value of Siegel Eisenstein series at each 0-dimensional cusp, especially the
Fourier expansion of Ek

N,ψ(Z, s).

3 Fourier expansions of Eisenstein series

From now on, let g = 2 and N = p be an odd prime number. Put e(X) = e2πi Tr(X) for a
square matrix X, A[B] := tBAB, Λ1,2 = {(q1, q2) ∈ Z2/{±1} | (q1, q2) = 1}, and

Symg(Z)∗ = {h ∈ Symg(Q) | Tr(hA) ∈ Z, ∀A ∈ Symg(Z)}.

Then the (1st-version of) Fourier expansion of Ek
p,ψ is given by

Ek
p,ψ(Z, s) = 1 +

∑

m∈Z

∑

(q1,q2)∈Λ1,2

S1(ψ, m, k + 2s)ξ1(Y [( q1
q2 )],m, k + s, s) e(m

(
q2
1 q1q2

q1q2 q2
2

)
X)

+
∑

h∈Sym2(Z)∗
S2(ψ, h, k + 2s)ξ2(Y, h, k + s, s) e(hX).

We explain the notation. First

ξg(Y, h, α, β) =
∫

Symg(R)
det(X + iY )−α det(X − iY )−βe(−hX) dX,

with Symg(R) 3 Y > 0, α, β ∈ C. Here the branches of the complex power det(X + iY )−α,
det(X − iY )−β are defined suitably. This function is called a confluent hypergeometric
function and studied deeply in [Sh1]. We have
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Theorem 3.1 (Shimura, [Sh1, (4.34.K), Theorem 4.2]). For h ∈ Symg(Q)∗ with
sgn h = (p, q, r),

ξg(Y, h;α, β) = ig(β−α)2∗π∗Γr(α + β − g + 1
2

)Γg−q(α)−1Γg−p(β)−1

× det(Y )
g+1
2
−α−βd+(hY )α− g+1

2
+ q

4 d−(hY )β− g+1
2

+ q
4 ω(2πY, h, α, β).

(3.1)

Here d+(x) (resp. d−(x)) denotes the products of positive (resp. negative) eigenvalues of x
and Γm(s) = πm(m−1)/4

∏m−1
k=0 Γ(s− k/2). Moreover ω(2πY, h, α, β) is an entire function in

α and β.

Next we explain Sg(ψ, h, s), which is called the Siegel series. For T ∈ Symg(Q), choose
U, V ∈ SL(g,Z) such that

T = U




ν1/δ1

. . .
νg/δg


 V, (νi, δi) = 1, δi > 0,

and put δ(T ) =
∏

δi, ν(T ) =
∏

νi. Then the (generalized) Siegel series are defined by

Sg(ψ, h, s) =
∑

T∈Symg(Q) mod 1
p|δi

ψ(ν(T ))δ(T )−se(hT )

=
∏

q: primes

Sq
g(ψ, h, s),

where

Sq
g(ψ, h, s) =





∑

T∈Symg(Q)q mod 1

ψ(δ(T ))δ(T )−se(hT ) q 6= p;

∑

T∈Symg(Q)p mod 1
p|δi(T ),∀i

ψ(ν(T ))δ(T )−se(hT ) q = p,

Symg(Q)q =
⋃
n

1
qn

Symg(Z).

If q 6= p, Sq
g(ψ, h, s) are already studied by many mathematicians e.g. Kaufhold (g = 2),

Siegel, Kitaoka and finally H. Katsurada ([Kat]) gave an explicit formula for any g.

Theorem 3.2 ([Kau, (2.10), Hirfssatz 10]).

∏

q 6=p

Sq
2(ψ, h, s) =





L(s− 2, ψ)L(2s− 3, ψ2)
L(s, ψ)L(2s− 2, ψ2)

h = 0;

L(2s− 3, ψ2)
L(s, ψ)L(2s− 2, ψ2)

∏

q 6=p

Fq rankh = 1;

L(s− 1, ψχh)
L(s, ψ)L(2s− 2, ψ2)

∏

q 6=p

Gq rankh = 2.

Here L(ψ, s) is the Dirichlet L-function, χh is the quadratic character associated with
Q(
√−det 2h)/Q, Fq and Gq are polynomials in q−s such that Fq = Gq = 1 for all but

finite q.
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Remark 3.1. As is already mentioned, in [Sh2] Shimura considered the Fourier expansion
of Ek

p,ψ|kJ2(Z, s). It is essentially given by

∑

h∈Sym2(Z)∗


∏

q 6=p

Sq
2(ψ, h, k + 2s)


 ξ2(Y, h, k + s, s) e(hX),

which does not contain the term Sp
g (ψ, h, s). This is the main reason why he considered the

twisted function.

To consider the Fourier expansion of Ek
p,ψ(Z, s), we have to calculate Sp

g (ψ, h, s). Since
it is easy if g = 1, we consider the case g = 2 in the next section.

4 Euler p-factor for Siegel series

The following lemmas are crucial for our main result.

Lemma 4.1.

Sp
2(ψ, 0, s) =





0 ψ2 6≡ 1;

ψ(−1)
(p− 1)p1−2s

1− p3−2s
ψ2 ≡ 1, ψ 6≡ 1;

p3−2s(1 + p1−s)
(1− p2−s)(1− p3−2s)

ψ ≡ 1.

Lemma 4.2. Assume that ψ is a non-trivial character. Then for h =
(

t 0
0 0

)
with ordp t =

m,

S2(ψ, h, s) =





0 ψ2 6≡ 1;

a(p−s) +
b(p−s)

1− p3−2s
ψ2 ≡ 1,

with

a(p−s) = ψ(−1)

(
p− 1
p2

+
m+1∑

k=1

p(3−2s)k

)
,

b(p−s) = ψ(−1)(p− 1)p(3−2s)m+4−4s.

Lemma 4.3. If rankh = 2, then Sp
2(ψ, h, s) is a polynomial in p−s.

The polynomial in Lemma 4.3 can be given explicitly, however we omit it. We shall give
only the proof of Lemma 4.1, others are proved in a similar way.

Proof of Lemma 4.1. We use the following facts, whose proofs can be found in [Ma, §11,
12].

(i) Let Mg = {(C, D) ∈ Mg,2g(Z) | C tD = D tC, CX + DY = 1g, ∃X, Y ∈ Mg(Z)} (the
set of symmetric co-prime pair) and Mr

g = {(C,D) ∈ Mg | rankC = r}. Then the
map

GL(g,Z)\Mg
g −→ Symg(Q), (C, D) 7−→ C−1D

is bijective. We have δ(C−1D) = |det C| and ν(C−1D) = ±det D.
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(ii) If (C, D) is symmetric i.e. C tD = D tC, then there exists (C ′, D′) ∈ Mg and M ∈
Mg(Z) such that C = MC ′ and D = MD′.

Let M̃g(p) = {(C,D) ∈ Mg,2g(Z) | det C = pa, C ≡ 0 mod p, C tD = D tC}. The above
facts show that

Sp
2(ψ, h, s) =

∑

C

∑

D mod C

(C,D)∈SL(2,Z)\fM2(p)

ψ(detD)(detC)−se(hC−1D).

Indeed if (C,D) is not co-prime then ψ(detD) = 0 by (ii). Put T (k, l) =
(

pk 0
0 pk+l

)
. A

representative set of SL(2,Z)\SL(2,Z)T (k, l)SL(2,Z) is given by T (k, 0) if l = 0, while it is
given by

{
T (k, l)V

∣∣∣∣ V =
(

1 u
0 1

)
, u ∈ Z/plZ

}
∪

{
T (k, l)V

∣∣∣∣ V =
(

pu 1
−1 0

)
, u ∈ Z/pl−1Z

}
,

if l ≥ 1. For such C = T (k, l)V , D runs through the set
{(

a b
plb d

)
tV −1

∣∣∣∣ a, b ∈ Z/pkZ, d ∈ Z/pk+lZ
}

.

Thus we have

Sp
2(ψ, 0, s) =

∞∑

k=1

∞∑

l=0

∑

a,b,d

∑
u

p−(2k+l)sψ(ad− plb2).

We calculate the case ψ 6≡ 1. Then it is easy to see that the summation for l ≥ 1 vanishes
because of the term

∑
a,d ψ(ad). Hence we have

Sp
2(ψ, 0, s) =

∞∑

k=1

p−2ks
∑

a,b,d∈Z/pk

ψ(ad− b2)

=
∞∑

k=1

p(3−2s)k−3
∑

a,b,d∈Z/p

ψ(ad− b2).

For the term a = 0 is given by

∞∑

k=1

p(3−2s)k−3
∑

b,d∈Z/p

ψ(−b2) =

{
ψ(−1)

∑∞
k=1 p(3−2s)k−2(p− 1) ψ2 ≡ 1;

0 ψ2 6≡ 1.

On the other hand if a 6= 0 then we change the variable d 7→ d + a−1b2, which becomes

∞∑

k=1

p(3−2s)k−3
∑

a,b,d

ψ(ad) = 0.

This proves our lemma.

Remark 4.1. Summering the above lemmas, Theorem 3.1 and Theorem 3.2 the explicit
formula of the Fourier expansion of Ek

p,ψ(Z, s) are given in the case g = 2. Such a formula
for k ≥ 4 are already given in [Miz] using another method.
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As a consequence we can give an another proof of the following theorem.

Theorem 4.4 ([Sh2, Theorem 10.4]). If ψ2 6≡ 1 then E2
p,ψ(Z, 0) ∈ M2(Γ 2

0 (p), ψ). More-
over the Fourier constant term of E2

p,ψ(Z, 0) is 1.

The word “another” means that we can show the above theorem by considering the
Fourier expansion of E2

p,ψ(Z, s). We remark that the information of the Fourier constant
term of E2

p,ψ(Z, 0) is not given in [Sh2].

5 The dimension of the space of Eisenstein series of weight 2

An important application of the above is to calculate the dimension of the space of Siegel
Eisenstein series for low weights, i.e. to answer the question (3) raised in Section 2. In the
case of k = 1, the answer is already given in [Gu], thus we consider the case k = 2.

Theorem 5.1. For ψ(−1) = 1,

dimE2(Γ 2
0 (p), ψ) =





1 ψ ≡ 1;
3 ψ = ( ·p);

2 ψ2 6≡ 1.

Proof. For f ∈ Mk(Γ 2(p)), let C0(f) be the Fourier constant term of f . The structure of
the boundary of the Satake compactification of Γ 2

0 (p)\H2 is given by the following figure,

r r

r

14 M

J2

where M =




0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1


, J2 =

(
0 12

−12 0

)
.

Assume that ψ2 6≡ 1. We use the following lemma.

Lemma 5.2 ([Gu, Lemma 3.7]). Assume that ψ2 6≡ 1. Then for any f ∈ Mk(Γ 2
0 (p), ψ),

C0(f |kM) = 0.

The above figure and the lemma show that dimE2(Γ 2
0 (p)) ≤ 2. We already know

E2
p,ψ

(Z) = E2
p,ψ

(Z, 0) ∈ M2(Γ 2
0 (p), ψ) by Theorem 4.4. Put

F (Z) =
∑

T∈Sym2(Fp)

E2
p,ψ

∣∣∣∣
2

(
0 12

−12 T

)
(Z),

then F (Z) ∈ M2(Γ 2
0 (p), ψ). Since C0(E2

p,ψ|2J2) is already calculated in [Sh2], we have

C0(E2
p,ψ
|2γ) =

{
1 γ = 14;
0 γ = M or J2,

C0(F |2γ) =

{
1 γ = J2;
0 γ = 14 or M,
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which shows that dimE2(Γ 2
0 (p), ψ) = 2.

Next we consider the case ψ2 ≡ 1. In this case E2
p,ψ(Z, s) is not regular at s = 0.

However as is shown in [BS, Proposition 5.2 b)], the function

Ẽ2
p,ψ(Z, s) := L(2 + 2s, ψ)L(2 + 4s, ψ2) det(Y )sE2

p,ψ(Z, s)

is regular at s = −1/2 and Ẽ2
p,ψ(Z) := Ẽ2

p,ψ(Z,−1/2) ∈ M2(Γ 2
0 (p), ψ). For the trivial ψ, the

above figure shows that dimE2(Γ 2
0 (p)) ≤ 1 because of the fact dim E2(Γ 1

0 (p)) = 1. Thus we
have dim E2(Γ 2

0 (p)) = 1.
Finally we consider the case ψ = ( ·p). We need to know the value C0(Ẽ2

p,ψ|2γ) for γ = 14,

J2 and M , but it is difficult to calculate the Fourier expansion of Ẽ2
p,ψ|2M , since we cannot

show that the “Siegel series” have an Euler product expression there. However the image of
Siegel operator Φ(Ẽ2

p,ψ) can be written by elliptic Eisenstein series, thus we can compute the
value C0(Ẽ2

p,ψ|2M) = C0(Φ(Ẽ2
p,ψ)|2J1). Now the following three functions in M2(Γ 2

0 (p), ψ)

Ẽ2
p,ψ, F :=

∑

T∈Sym2(Fp)

Ẽ2
p,ψ|2α(T ), G :=

∑

c1,d2∈Z/p

Ẽ2
p,ψ|2γ(c1, d2) +

∑

d1∈Z/p

Ẽ2
p,ψ|2δ(d1),

with

α(T ) =
(

0 12

−12 T

)
, γ(c1, d2) =




0 0 0 −1
−1 0 0 0
c1 1 0 d2

0 0 −1 c1


 , δ(d1) =




0 0 −1 0
0 1 0 0
1 0 d1 0
0 0 0 1


 ,

are linearly independent and 〈Ẽ2
p,ψ, F, G〉C ∩ L2(Γ 2

0 (p), ψ) = {0}. This concludes our theo-
rem.

Finally we state our main result.

Theorem 5.3. We have

dimE2(Γ(p)) =
1
2
(p− 3)(p + 1)(p2 + 1) +

1
2
p(p2 + 1).

Outline of the proof of Theorem 5.3. We use the theory of representations of finite groups.
Let G = Sp(2,Fp). Put

P 0 =
{(

A B
0 D

)
∈ G

∣∣∣∣ det D ∈ {±1}
}

, H =
{(

A B
0 D

)
∈ G

}
,

which are the images of P0 and Γ 2
0 (p) respectively under the canonical map Γ 2 → G. We

define the characters u0 of P 0 and ψ̃ of H by

u0(γ) = det Dγ ∈ {±1}, ψ̃(γ) = ψ(detDγ)

for a Dirichlet character ψ modulo p. By [Gu, Lemma 3.3, 3.4], we can show that the
representation of G on Ek(Γ 2(p)) is isomorphic to a sub-representation of

IndG
P 0

(uk
0) =

⊕

ψ(−1)=(−1)k

IndG
H(ψ̃).

The Frobenius reciprocity law says

HomG

(
IndG

H(ψ̃), Ek(Γ 2(p))
) ' HomH

(
ψ̃, Ek(Γ 2(p))

) ' Ek(Γ 2
0 (p), ψ), (5.1)
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thus dimE2(Γ 2
0 (p), ψ), which is given in Theorem 5.1, equals to the number of irreducible

representations of G in E2(Γ 2(p)). All the irreducible characters of G are given in [Sr].
Actually we have the following decomposition. Fix a generator ξ of F×p and define the
Dirichlet character ψl modulo p by ψl(ξx) = e(xl/(p−1)). Note that ψl(−1) = 1 if and only
if l is even. Then

IndG
H(ψ̃l) =





1G ⊕ θ9︸︷︷︸
1
2
p(p+1)2

⊕ θ11︸︷︷︸
1
2
p(p2+1)

l = 0;

θ3︸︷︷︸
1
2
(p2+1)

⊕ θ4︸︷︷︸
1
2
(p2+1)

⊕ Φ9︸︷︷︸
p(p2+1)

l = (p− 1)/2;

χ8(|l|)︸ ︷︷ ︸
(p+1)(p2+1)

−(p− 3)/2 ≤ l ≤ (p− 3)/2, l 6= 0.

By Theorem 5.1 and (5.1), we have IndG
H(ψ) ⊂ E2(Γ 2(p)) for ψ 6≡ 1. If ψ ≡ 1,

we can show that {Ẽ2
p,1|2γ(Z) | γ ∈ Γ 2} generates a 1

2p(p2 + 1)-dimensional space in
M2(Γ 2(p))/L2(Γ 2(p)). This complete the theorem.

References
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