Siegel modular forms modulo p

Takashi Ichikawa (Saga University)

Abstract

Using moduli theory of abelian varieties and a recent result of Bocherer-Nagaoka on liftings
of the generalized Hasse invariant, we study Siegel modular forms over a field of characteristic
p > 0, and over a ring in which p is nilpotent more generally. We describe the ring structure
of Siegel full modular forms of degree 2, and show the congruence property on Siegel modular
forms of any level.

1 Introduction

Let k be a perfect field of characteristic p > 0, denote by W (k) the ring of Witt vectors over
k, and put Wy, (k) = W(k)/(p™). The aim of this paper is to study the ring structures,
relations via the reduction map, and the congruence property of Siegel modular forms (de-
noted by SMFs for short) over these rings. More precisely, we consider the commutative

diagram:
{SMFs over W(k)} — {power series over W (k)}
! !
{SMFs over Wy,,(k)} — {power series over W,,(k)}
l !
{SMFs over k} — {power series over k},

where the rightarrows denote the Fourier expansion maps, and the downarrows denote the
reduction maps, and we study

Problem

e What is the ring structure of Siegel modular forms over Wy, (k) ?
e When is the reduction map {SMFs over W (k)} — {SMFs over W,,,(k)} surjective ?

e What is the structure of the ideal given by the kernel of the Fourier expansion map
over W, (k) 7 (Note that the map is injective over W (k).)

In this paper, using moduli theory of abelian varieties mainly constructed by Mum-
ford [FKM], Faltings-Chai [FC], and a result of Bocherer-Nagaoka [BN] on liftings of the
generalized Hasse invariant h,_1, we prove the following results:

1. If p > 3, then the ring of Siegel full modular forms over W,,, (k) (more generally, over
any Z[1/6]-algebra) of degree 2 is described, and the reduction map is surjective (cf.
Theorem 1).

2. Assume that p > g+ 2. Then for Siegel modular forms (not congruent to 0 modulo p)
over W, (k) of degree g having the same Fourier expansion, their weights are congruent
modulo (p — 1)p™ ™!, and their differences belong to the ideal generated by

1 — (a power of 6,_1 mod (p™)),

117



where 6,1 denotes Bocherer-Nagaoka’s lift of hj,_; (cf. Theorem 2).

We will briefly mention the proof of these results. The first result gives a generalization
of Igusa’s result [Igl,2] in the complex coefficients case, and it follows from algebraic and
moduli theoretic interpretations of results of Freitag [F|, Hammond [H|, Nagaoka [N] and
Ibukiyama [I]. The second result is a generalization of the congruence property on elliptic
modular forms shown by Swinnerton-Dyer [Sw| and Serre [S], and it follows from Katz’
argument [K] by using the irreducibility of the Igusa tower proved by Faltings-Chai [FC].

2 Moduli and modular forms

We review results of Mumford [FKM] and of Faltings-Chai [FC] on moduli and modular
forms. For positive integers g,n, let ¢, be a primitive n-th root of 1, and let M, , be
the moduli stack (which becomes the fine moduli scheme when n > 3) over Z[1/n,(,]
of principally polarized abelian schemes of relative dimension g with symplectic level n
structure. Then M, ,(C) is a complex orbifold of dimension g(g+1)/2, and it is represented
as the quotient space H,/I'y, of the Siegel upper half space H, by the integral symplectic
group I'y,, = Ker (Spy(Z) — Spy(Z/nZ)) of degree g and level n. Then there exists a
universal abelian scheme A with 0-section s over M, ,,, and the Hodge line bundle X is defined
by det (s* (Q A /Mg)) which corresponds to the automorphic factor over M, ,(C). Faltings-
Chai [FC] constructed a smooth compactification M, of M, associated with a good cone
decomposition of positive semi-definite symmetric bilinear forms on RY, and a semi-abelian

scheme G with 0-section s over Mg,n extending A — M,. Then A def det (s* (Qg /Mg»

gives an extension of A to M ,, and

«  def . o (=7 ~®h
M, < Proj (D H (Mg,n,A )
h>0

is a projective scheme over Z [(,, 1/n| called Satake’s minimal compactification.
For any Z [1/n, (,]-algebra R, we define the R-module Sy j, »(R) of Siegel modular forms
over R of degree g, weight h and level n by

=7 ~®h
Sg,h,n(R) = HO (Mg,ny A ®Z[1/n,<n] R) ’

and the (graded) ring Sy ,,(R) of Siegel modular forms of degree g and level n by

S n(R) = €D Synn(R).
h>0
Then by Koecher’s principle, Sg5,(R) = H° (Mgvn,)\®h ®R) if ¢ > 1, and by Serre’s
GAGA, Sy .n(C) becomes the space of holomorphic functions on H, with the automorphy
condition of weight h for Iy ,, (and the cusp condition if g = 1). When n = 1, deleting n in
the above notation we put

g,1>

{ My = Mg, Mg = Mg,la M; = M*
Sgyh(R) = Sg,h,l(R)v S;(R) - *,1(R)7

and call elements of Sy (R) Siegel full modular forms.
By evaluating Siegel modular forms on Mumford’s semi-abelian scheme:

GY, /(455 = Gjihr<i<g | 1< < g)
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with a polarization and a symplectic level n structure over
+1 . . 1
Agn =17 [l/n, Cny 4;; /n(Z # ‘7)} qu{n’ D) Q;énﬂ

given in [Mul], for each 0-dimensional cusp, we can associate an R-linear ring homomor-
phism
Fr: 85,(R) — Agn @zf1/ng,) R

which is called the Fourier (q-)expansion map and satisfies the following (cf. [FC, Chapter
V]):

e ['p is functorial for R,
e I becomes the classical Fourier expansion,

e Fg is injective on each Sy, ,(R), and further for f € Sy 5, (R) and a sub Z [1/n, (,]-
algebra R’ of R,

FR<f) S Ag,n ®Z[1/n,§n] R = f eSS 7h,n(R’)
which is called the g-expansion principle.

Remark 1. Nagaoka [N] called the elements of
Fe (S;(Zy, N Q)) mod(p) C Fr, (S;(Fp)) € Ay@F,

mod p Siegel modular forms of degree g which are power series of g;; over IF,,, and make a
subring of the image by Ff, of the ring of our Siegel full modular forms over F,,.

Remark 2. The tautological bundle A\* is ample on Mg ,, and hence sufficiently large
integers h satisfy the vanishing condition:

H! (M;’n, ()\*)®h R /r ] W(k)) = {0}.
Then by the exact sequence

H (Mg, N @ W(K))/p — HO(Mg,,(\)*" @ k) — H'(M;,, (X)*" @ W(k),
one can see that the reduction map Sy, (W (k)) — Sgnn (k) is surjective if A > 0 and p is
prime to n. However, the explicit lower bound of A satisfying the vanishing condition seems
not known.

3 Modular forms of degree 2

In this section, we assume that g = 2 and consider Siegel full modular forms over a Z [1/6]-
algebra R of degree 2. By Igusa’s results [Igl,2], there are Eisenstein series Ey € S24(Z),
Es € So6(Z), and cusp forms x10 € S210(Z), x12 € S212(Z), x35 € S2,35(Z) which are
all normalized and hence primitive, i.e., not congruent to 0 modulo any prime. Denote by
the same symbol the elements of S5(R) obtained from the above modular forms naturally,
i.e., given by the image of these forms tensored with the unit of R by the natural R-linear
homomorphism 55(Z) ® R — S5(R).
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Theorem 1. Let R be as above. Then the even part
S57(R) < €D Sa.on(R)
h>0
of S5(R) is generated by the four modular forms Ex, Es, x10, X12, and
S3(R) = 55" (R) @ x35 - 55" (R).
In particular, if p > 3, then the reduction map S5(Z,) — S5(F,) modulo p is surjective.

Proof. First, using a moduli theoretic interpretation of results of Igusa [Igl], Freitag [F],
Hammond [H] and Nagaoka [N], we will prove that

S5V (R) = R[Ey4, Es, x10, X12] -

Let m : C — X2 be the universal curve over the moduli stack of stable curves of genus 2,
and let we x, be its relative dualizing sheaf (cf. [DM]). Then the map

§% (7 (weyx,)) 2s@ 8 =508 €, (w?/2X2>

(S2(%) denotes the symmetric tensor product of * with itself) obtained by taking products
of local sections, and Mumford’s isomorphism (cf. [Mu2], Theorem 5.10) give

det (. (wepx) ™ 2 det (m (Wi, ) © Ox (A1)
> det (m (weyx,))® © Ox, (Ag +241)Y |

where Ay denotes the locus in X5 consisting of self-intersecting curves of genus 2, and A;
denotes that of unions of two curves of genus 1. Then the isomorphism gives

OX2 = det (7T* (wC/XQ))®1O X OX2 (AO + 2A1)®(_1) ,

and the image of 1 € Ox, becomes x19 € S2.10(Z) up to sign by the uniqueness of the Siegel
cusp form of degree 2 and weight 10. Therefore, the divisor div(x19) of x10 is Ag + 2A;.
Since M, parametrizes principally polarized semi-abelian schemes with proper general fiber
of relative dimension 2, there is a morphism X5 — M5 sending each stable curve of genus 2 to
its generalized Jacobian variety with canonical polarization. Then combining the pullback
by this morphism and the restriction to Aj, we have an R-linear homomorphism Wg :
S3(R) — S? (S§(R)) called the Witt operator which satisfies that

o if f € Sy,(R), then W(f) is a sum of symmetric products of g;, h; € S14(R), and its
Fourier expansion Fg (W (f)) is Fr(f)|qo=go1=1-

o W(E;) = Ei(l)(qn) . EZ-(l)(QQQ) (1 = 4,6), and W(x12) = 12A(q11) - A(ga2), where Ei(l)
and A are the normalized elliptic Eisenstein series of weight ¢ and cusp form of weight
12 respectively (cf. [N, p.414]).

By the definition of W, for any f € Ker (Wg) of even weight, its Fourier expansion Fg(f)
is divided by ¢11 - ¢22 and by (g12 — 1)2 = (g1 — 1)2 because it is invariant under the trans-

0 -1 0 0
-1
q11 q12 Q22 Qo9 C e 1 00 O
f - hich is induced f; € Spa(Z).
orm < Gr o > — ( q121 o > which is induced from 0 00 -1 p2(7Z)
0 01 0
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Therefore, div(f) > Ag + 2A1, and hence f is divided by x10 € S2,10 (R). On the other
hand, the moduli stack M; ® Z[1/6] of elliptic curves over Z[1/6]-schemes is the quotient of
the affine line A%[l /g Such that A%[l 5 — Mi® Z[1/6] is a double cover and cyclic of order
4,6 at the unique zeros of Eél), Ez(ll) respectively. Hence the ring S (R) of elliptic modular

forms over R is generated by Eil) and Eél)

of [N, Theorem 4.3],

. Therefore, by Nagaoka’s argument in the proof

S5V (R) = R[Ey4, Es, X10, X12] -

Second, following Ibukiyama’s proof [I] of Igusa’s result [Igl], we will prove that any
Siegel full modular form over R of degree 2 and odd weight is divided by xs5, and hence
the quotient belongs to S§Y°"(R). Following [Igl, II, p.398], we identify Spy (Z/27Z) with
the symmetric group Sg of degree 6 via the action on odd characteristics, and denote by
I’y . the subgroup of I'y = Spa(Z) of index 2 which is defined as the inverse image of the
alternating subgroup Ag of Sg by the surjective homomorphism 'y — Spy (Z/27Z) = Sg.
Let T'1 e be the subgroup of I'y = SLy(Z) of index 2 which is the inverse image of Ag by
I'y = SLy(Z/2Z) = S3. Then we have:

0 -1 0 0
1 00 0 _ . q1 1 g2 1
(1) 0 0 0 —1 belongs to 'y — 'y ¢, and it maps( 1 qm)to< 1 o ),
0 01 0
a 0 b O 1 0 0 O
a b 01 00 a b 0O a 0 b .
(2)%(0(1)_ c 0 d o and¢2<cd>_ 0 0 1 o | 8ive homo
0 0 01 0 ¢c 0 d

morphisms I'y — I'y satisfying that o € I'1 ¢ & 9¥i(a) € T'g e for o € 'y and i =1, 2.

Further, for ¢ = 1,2, H4/I'y. has a natural model over Z[1/2] which we denote by M,
and the normalization 7 : Mg,e — Mg of M, . is ramified only along the divisor lying above
the (unique) O-dimensional cusp on M.

For g =1,2, let S_ () denote the space of Siegel modular forms over a Z[1/2]-algebra
of degree g and weight h with odd character for I'y — I'g/I'g . =2 {£1}. Then it is known
that a square root of x19 € S2.10(Z) is given as the product 05 of the even theta constants
and of 276 which is a primitive cusp form and belongs to Sy5(Z[1/2]). Denote by the same
symbol the Siegel cusp form over R obtained from 65 naturally. Let f € Syj (R) have
an odd weight h. Then by [Ig2, Lemma 8], div(f) > 2Ag + Ay, hence f is divided by
05, and further the quotient f/65 € 52_,h—5 (R) has zero on m1(Ag) C Ma, of order > 3.
The Witt operator W can be also defined on Sy, (R) as above, and hence by (1) and (2),
W(f/0s) = Fr (W (f/05)) is represented as

> (gilanr) - hilga2) — hilqur) - gig22)) ,
where g;, h; € Sih—5 (R) has zero of order > 3 at the cusp 7! (Ml — Ml) of My.. Since

VA € S (Z[1/2]) has only zero of order 1 at the cusp of M, 9i/V A hi /A € Sy 11 (R)
are cusp forms, and (we may assume that) are linearly independent by the above represen-
tation. Therefore, by the linearlity of W, we may put

(9i» hi) = <A3/2+a' (Ezil))b- (Eé”)c’ A3/ (Eil))?)ﬁb- (Eél))c>
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for some integers a,b > 0 and ¢ € {0,1}. Since

W (x35/05) | /qiz=\/a@i=1
= 2A(q11)%% - A(gae)*? - (A(QH) . Eil)(QQQ)g — Efll)(QM)?’ . A(QQQ)) ;

and

A(gin)® - B (g20)* — B (q11)% - Algon)®
Aqn) - Eil)(Q22)3 — Ez(ll)((hl)g - A(g22)

= > (A(QII)'Eil)(q22)3>

i+j=a—1

i J

: (Efll)(Q11)3 : A(sz))

which belongs to W (S5V°" (R)) as is shown in the proof of [N, Theorem 4.3], there is an
clement f’of S, 5 (R) divided by x35/05 such that W (f’) = W(f/65). Therefore, f/05— f’
belongs to Ker(W), hence is divided by 05, and further (f/65 — f’) /05 belongs to S 19 (R).
Repeating this process one can see that f is divided by 65 - (x35/605) = x35. This completes
the proof. O

4 Congruence between modular forms

In this section, we prove a generalization for Siegel modular forms of the congruence property
on elliptic modular forms (cf. [K], [S], [Sw]).

First, we review the Siegel full modular form h,_; over F, of degree g and weight p — 1
given in Deligne’s letter [D] to Nagaoka at 1977, 1979 (see also [N]) as a generalized Hasse’s
invariant. This is a unique (by the g-expansion principle) element of Sy ,_1(F,) such that
Fr,(hp—1) =1 and is obtained as the image of 1 by the homomorphism Oy gr, — \&(p—1)
which comes from the bundle map A — A?) = A®P associated with the Verschiebung. Hence
the divisor of hj,_1 is the locus consisting of principally polarized non-ordinary abelian
varieties in My ® F),. Recently, Bécherer-Nagaoka [BN] proved that if p > g 4 2, then there
exists a Siegel full modular form 6,_1 over Z,NQ of degree g and weight p—1 constructed as
a theta series which satisfies that Fz, (6p—1) is congruent to 1 modulo p, and hence that h,_1
is the reduction of #,_; modulo p by the g-expansion principle. Using this Siegel modular
form, we have:

Theorem 2. Let k be a perfect field of characteristic p > g+2, and let n be a positive integer
prime to p such that k contains a primitive n-th root of 1. Assume that two Siegel modular
forms f; (i = 1,2) over Wy, (k) of degree g and level n having the same Fourier expansion
not congruent to 0 modulo p at (at least) one 0-dimensional cusp. Then the weights h; of
fi (i =1,2) satisfy the congruence hy = ha modulo (p — 1)p™~1, and

fi = fi- (0p—1 mod(p™)) M=M= e g (W, (k)

if hi > hj. When m = 1, for any prime p, the same statement holds by replacing 0,1
mod (p™) with hy—_1.

Proof. We extend Katz’ proof [K, 4.4] on the congruence of elliptic modular forms. We
may assume that k is algebraically closed and that n > 3. Then all the geometric fibers of
M = My, and M = Mg, over Z[1/n,(,] are irreducible. Put M, = M gz /5.¢,] Wi (k),
and let S,,, be the open subscheme of M, on which p—1 is invertible, where 6,1 is regarded
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as an element of H° (Mm,X®(p‘1)). Then over S,,, the maximal etale quotient G[p™]°* of

G[p™] = Ker (p™ : G — §G) is isomorphic to (Z/p™Z)?, and hence there is a covering T, of
S called the Igusa tower which represents

Isom ((Z/p"Z)?, Glp™") .

Then by [FC, Chapter V, Proposition 7.1] (see also [Hi, Theorem 6.27]), T, is a Galois
cover of S, with covering group GL, (Z/p™Z). Further, one can see that by the Cartier

duality, each isomorphism (Z/ me)ifm 5¢g [pm]';%m gives

¢ G, = W )ir, = G,
where G[p™]° denotes the connected component of G[p™] containing 1 and
GY, = Spec (Z [Xi, ... X))

denotes the g-dimensional split torus, and that * (dX;/X;) (i = 1,...,g) are uniquely ex-
tended to a basis of 1-forms on G. Therefore, there is an isomorphism

g[Pm]et ®Z/me OTm = S* (Qg/Tm)
which is compatible with the action of Aut (Tm /gm), and hence we have

det (Q[pm]et) ®Z/me Ogm = Xgm.

For an k-algebra R and a semi-abelian scheme A over W,,(R) corresponding to a morphism
Spec (Wi (R)) — Sm, A[p]° ® R is the kernel of the Frobenius map A ® R — (A® R)®),
and A/A[p]° = A®w,,(r),c Win(R), where o ((a1,...,am)) = (af,...,ai) (a; € R). Hence the
correspondence G — G/G[p]° gives rise to a morphism ¢ : S,, — Sy W, (k)0 Wm(k), and
det (G[p™]°") is the invariant subsheaf of Xgm under ¢.

By the assumption, there is a non-empty open subscheme U of S,,, on which fi, fa are
invertible, and the Fourier expansion (at the cusp considered in the theorem) of the ratio
fi/f2 is 1. Therefore, fi/f2 on U is invariant under ¢, and hence the (h; — hy)-th tensor
power of the representation of m(U) on det (G[p™]") is trivial. On the other hand, by the
above result in [FC], the image of m (U) — Aut (det (G[p™]*")) = (Z/p™Z)* is surjective.
Therefore, h; — ho = 0 modulo (p — 1)p™ !, and hence by the g-expansion principle,

fi = fj- (01 mod(pm))(hi—hj)/(p—l)

if hy; > hj.

Assume that m = 1. Then the above proof works changing 6,,_1 modulo p by h,_; which
exists for any p. This completes the proof. O
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