
SL2(Z)上のMaass波動形式の閉測地線に沿った周期積分に

付随するスペクトル型ゼータ函数について

都築 正男 (上智大学)

1 Introduction

Let H = {τ = x + iy ∈ C| y > 0 } be the upper half plane. Then the special linear group
G = SL2(R) acts on H by the fractional linear transformation:

g〈τ〉 def= aτ+b
cτ+d , g =

(
a b
c d

) ∈ G, τ ∈ H

preserving the Poincaré metric ds2 = y−2(dx2+dy2) of H. Let Γ ⊂ G be a Fuchsian group of
the first kind, i.e., a discrete subgroup of G which admits a measurable fundamental domain
FΓ in G with the finite invariant volume. Define the Hilbert space L2(Γ\H) to be the space
of all the measurable functions φ : H → C with the Γ-invariance

φ(γ〈τ〉) = φ(τ), (∀γ ∈ Γ) such that
∫

FΓ

|φ(τ)|2 dxdy
y2 < +∞.

We consider the hyperbolic Laplacian 4 = −y2
(

∂2

∂x2 + ∂2

∂y2

)
acting on the space C∞(Γ\H)

consisting of all the Γ-invariant C∞-functions on H.

Definition 1. A complex valued function φ(τ) on H is said to be an L2-Maass form on Γ
of eigenvalue λ if φ(τ) is a C2-function which is square integrable on FΓ and satisfies the
eigenequation of the Laplacian:

4φ(τ) = λφ(τ).

For a given λ ∈ C, set

A(Γ;λ) def= {L2-Maass forms φ(τ) on Γ of eigenvalue λ }.

Set ΛΓ
def= {λ ∈ C| A(Γ;λ) 6= {0} }.

As the initial domain of the Laplacian 4, we choose the space D(Γ\H) consisting of all
the bounded C∞-functions on H such that 4φ(τ) is bounded as well. Then the operator
(4,D(Γ\H)) is essentially self-adjoint, whose unique selfadjoint extension will be written
by 4Γ in this note. The set ΛΓ coincides with the pure point spectrum of 4Γ in L2(Γ\H).
It is a basic fact that the space A(Γ;λ) is a finite dimensional C-vector space consisting
of automorphic forms. Concerning the set ΛΓ, it is known that ΛΓ ⊂ [0,+∞) and ](ΛΓ ∩
[0, x)) < +∞ for all x > 0. (cf. [2])

Remark 1. (1) The minimal element of ΛΓ is 0, which corresponds to the eigenfunction
φ0 = (vol(FΓ))−1/2 (constant).
(2) The real analytic Eisenstein series comprise another class of Maass forms which are not
L2. An L2-Maass form φ(τ) is said to be a cusp form if the 0-th Fourier coefficient of φ(τ) at
any cusp of Γ vanishes. Cusp forms form a subspace of the space A(Γ;λ), whose orthogonal
complement is exhausted by some residues of the real analytic Eisenstein series constructed
for each cusp of Γ.
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The spectral zeta function for 4 on Γ is defined by

ZΓ(s) def=
∑

λ∈ΛΓ−{0}

1
λs

, s ∈ C. (1)

We put here some of the known results about this Dirichlet series and about the distribution
of the spectrum ΛΓ. Suppose Γ is a cocompact, i.e., Γ\H is compact. Then ZΓ(s) has a
meromorphic continuation to C with a simple pole at s = 1. The location of other possible
poles are also known. If Γ = SL2(Z), a meromorphic continuation is also known and it is
observed that double poles may occur ([3]). About the set ΛΓ for arithmetic lattice Γ, we
have Weyl’s law: As x → +∞

NΓ(x) :=
∑

λ∈ΛΓ∩(0,x)

dimCA(Γ;λ) ∼ 1
4π

vol(Γ\H) x.

Still, many basic problems remain unanswered. For example, to obtain a sharp bound of the
dimension dimCA(Γ;λ) is as such. For Γ = SL2(Z), it is even expected that dimCA(Γ;λ) =
1 for each λ ∈ ΛΓ.

If we abandon the assumption that Γ is cocompact or arithmetic, then less is known.
For example, ]ΛΓ = +∞ is hard to prove and may be even false in general. But Weyl’s law

NΓ(x) + MΓ(x) ∼ 1
4πvol(Γ\H) x

with the term MΓ(x) accounting the continuous spectrum of ∆ on L2(Γ\H) is still true for
general Γ. What is unknown is to determine which term (NΓ(x) or MΓ(x)) is dominant for
non arithmetic Γ.

In this note, for a given simple closed geodesic C ⊂ Γ\H, I introduce yet another new
zeta function similar to (1) associated with the period integrals of Maass forms along C
and study its analytic properties (such as meromorphicity and location of poles). As an
application an analogue of Weyl’s law for the norm square of the period integrals of Maass
forms along the geodesic C is obtained.

Given that the nature of the Maass wave forms is still enigmatic for us, a new approach
may shed some light on a new aspect of the Maass wave forms. Hopefully, our new zeta
function will be so.

This is a write up of my talk which I gave at the Fukuoka conference on number theory
held at Kyushu University in August 28–30, 2007. I would like to thank the organizers of
the conference, Professor Masanobu Kaneko, Professor Yasuhiro Kishi and Professor Yasuro
Gon, for having me there as a speaker.
(During the time I was writing [8], I found a mistake in the argument and that some of the
the results I announced in Fukuoka do not hold as they are. I apologize the participants
and the organizers for this. The corrected theorems are included in this note.)

2 Results

In order to state our result precisely, we need notation. An element η ∈ G is said to be
hyperbolic if there exist an Rη ∈ G and a real number N(η) > 1 such that

η = ±Rη

(
N(η)1/2 0

0 N(η)−1/2

)
R−1

η .
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The number N(η), uniquely determined by η, is called the norm of η. The fractional linear
transformation on H ∪ R ∪ {∞} defined by η has exactly two fixed points θ±(η) in R.

Let us fix a hyperbolic element η ∈ Γ once and for all. Let C(η) be the geodesic curve in
H joining the two fixed points θ±(η) ∈ R of η. The group Γη

def= { γ ∈ Γ| γηγ−1 = η } when
considered by modulo Γ∩ {±12}, is an infinite cyclic group stabilizing the curve C(η). The
quotient CΓ(η) def= Γη\C(η) is a compact cycle in Γ\H. The hyperbolic element η is said to
be primitive in Γ if the group Γη/{±12} ∩Γ is generated by η itself. Then the curve CΓ(η)
is simple and

∫
CΓ(η) ds = log N(η).

Definition 2. For a Γ-invariant continuous function f : H → C, define the period integral
along CΓ(η) by

∫

CΓ(η)
f ds def=

∫ log N(η)

0
f(Rη〈e2t

√−1〉) dt.

Since ΛΓ is a countable subset of positive numbers without finite accumulation points,
it can be enumerated in a sequence

0 = λ0 < λ1 6 λ2 6 · · · 6 λn 6 · · ·

so that each λ ∈ ΛΓ is repeated its multiplicity dimCA(Γ;λ) times. Then fix an orthonormal
system {φn} of L2-Maass forms such that 4φn = λnφn for all n ∈ N.

Let cj (1 6 j 6 h) be a complete set of inequivalent cusps of Γ. For each j, choose
σj ∈ SO(2) such that σj〈∞〉 = cj . Then define the Eisenstein series of Γ at j by

E(j)(s; τ) =
∑

γ∈Γcj \Γ
Im(σ−1

j γ〈τ〉)(s+1)/2, Re(s) > 1.

The series is absolutely convergent on Re(s) > 1; the E(j)(s) has a meromorphic continuation
to the whole s-plane, holomorphic on the imaginary axis.

Definition 3. We define the spectral zeta function with periods as

Zη
Γ(s) def=

∞∑

n=1

1
λn

s

∣∣∣∣∣
∫

CΓ(η)
φn ds

∣∣∣∣∣
2

+ 1
4π

∫

R

h∑

j=1

∣∣∣∣∣
∫

CΓ(η)
E(j)(it) ds

∣∣∣∣∣
2

dt

{4−1(1 + t2)}s
.

Remark 2. Since A(Γ;λ) is a finite dimensional Hilbert space for each λ ∈ ΛΓ, the linear
form φ 7→ ∫

CΓ(η) φds on it is represented by some (in fact the unique) function Φλ ∈ A(Γ;λ),
i.e.,

〈φ|Φλ〉
(

def=
∫

Γ\H

Φ̄λ(τ) φ(τ) dxdy
y2

)
=

∫

CΓ(η)
φds, φ ∈ A(Γ;λ).

Then we have
infty∑

n=1

1
λn

s

∣∣∣∣∣
∫

CΓ(η)
φn ds

∣∣∣∣∣
2

=
∑

λ∈ΛΓ−{0}

〈Φλ|Φλ〉
λs

,

an expression independent of the choice of a system {φn}.
Now, we state our main results.
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Theorem 4. Suppose Γ is a subgroup of SL2(Z) with finite index. Then,
• the series and the integral defining Zη

Γ(s) converge absolutely and locally uniformly on
Re(s) > 2, defining a holomorphic function there.
• Zη

Γ(s) has a meromorphic continuation to the whole s-plane. The possible poles of Zη
Γ(s)

are given as follows.
? s = 1

2 − n (n ∈ Z>0): possible simple poles.
? s = −m (m ∈ Z>0): possible double poles.

• Zη
Γ(s) has a simple pole at s = 1/2 with

Ress=1/2Z
η
Γ(s) = (2π)−1 log N(η).

Theorem 5. Suppose Γ is a subgroup of SL2(Z) of finite index. Then

∑

λn6x

∣∣∣∣∣
∫

CΓ(η)
φn ds

∣∣∣∣∣
2

+ 1
4π

∫ x1/2

−x1/2

h∑

j=1

∣∣∣∣∣
∫

CΓ(η)
E(j)(2

√−1t) ds

∣∣∣∣∣
2

dt ∼ log N(η)
π

x1/2, x → +∞.

3 Automorphic Green’s functions and automorphic heat ker-
nels

From now on, for the sake of simplicity of exposition, we suppose Γ = SL2(Z). Let η =
(

a b
c d

)
be a fixed primitive hyperbolic element of SL2(Z).

3.1 Arithmetic objects associated to η

Set

Bη ([ u
v ] , [ x

y ]) def= [u, v]
(

c (d− a)/2
(d− a)/2 −b

)[
x
y

]

and

Qη(X, Y ) def= Bη

([
X
Y

]
,
[

X
Y

])

= c(X − θ+(η)Y )(X − θ−(η)Y ).

The number D = (tr(η))2 − 4 (> 0) is the discriminant of Qη. For n ∈ Z− {0}, set

Λ(Qη;n) def= {(x, y) ∈ Z2|Qη(x, y) = n}/Γη,

Λ(Qη;n)0 def= {(x, y) ∈ Λ(Qη;n)| g.c.d(x, y) = 1 }.

For A, n ∈ Z− {0}, set

Sη(A,n) def=
∑

(x,y)∈Λ(Qη ;n)0

exp
(
−2π

√−1A
n Bη ([ x1

y1 ] , [ x
y ])

)
,

where for (x, y) ∈ Λ(Qη;n)0 the vector (x1, y1) ∈ Z2 is chosen so that xy1 − x1y = 1. (The
above expression is independent of the choice of (x1, y1)).

Let us define the zeta function of Qη by

ζ(Qη; s)
def=

∑

n∈Z−{0}

]Λ(Qη;n)
|n|s , s ∈ C.
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3.2 Eisenstein series for Γ

The modular group SL2(Z) has the unique cusp i∞ up to SL2(Z)-equivalence. The Eisen-
stein series of SL2(Z) at i∞ is defined by

E(ν; τ) def=
∑

γ∈Γ∞\Γ
Im(γ〈τ〉)(ν+1)/2, Re(ν) > 1,

where y(τ) means the y-coordinate of τ ∈ C. Then the series converges absolutely on
Re(ν) > 1, where it satisfies the eigenequation:

4E(ν) = 1−ν2

4 E(ν).

By the spectral theory, the function ν 7→ E(ν; τ) has a meromorphic extension to C satisfying
the functional equation

E(−ν; τ) =
ζ̂(ν + 1)

ζ̂(ν)
E(ν; τ) (2)

with ζ̂(s) = ΓR(s) ζ(s).
The computation of the period integral of E(ν) along CΓ(η) is due to Hecke. In our

case, the formula is
∫

CΓ(η)
E(s) ds =

1
8
ζ̂

(
Qη;

s + 1
2

)
ζ̂(s + 1)−1 (3)

where ζ̂(Qη; s) = Ds/4ΓR(s)2 ζ(Qη; s).

Remark 3. By the properties of E(ν) recalled above, we can deduce the meromorphicity
of ζ(Qη; s) and the functional equation: ζ̂(Qη; 1− s) = ζ̂(Qη; s).

3.3 Green’s function associated to η (cf. [2], [4], [5], [6])

Let us define the free space (relative) Green’s function associated with η by

ψη(s; τ) def= −1
8π

Γ
(

s+1
4

)2

Γ
(

s+2
2

)
(√

DIm(τ)
Qη(τ,1)

)(s+1)/2

2F1

(
s+1
4 , s+1

4 ; s+2
2 ;

(√
DIm(τ)

Qη(τ,1)

)2
)

with two variables τ ∈ H and s ∈ C. It turns out that for a fixed s ∈ C the function
τ 7→ ψη(τ ; s) is continuous on H and is C∞ on H − C(η). Having this function, we define
the automorphic (relative) Green’s function associated with η by the series

ΨΓ
η (s; τ) def=

∑

γ∈Γη\Γ
ψη(s; γ〈τ〉), τ ∈ H, s ∈ C.

Proposition 6. (1) The series ΨΓ
η (s; τ) is absolutely convergent when Re(s) > 1; the con-

vergence is locally uniform with respect to (τ, s).
(2) For a fixed s with Re(s) > 1, the function Γτ 7→ ΨΓ

η (s; τ) is an L1-function on Γ\H. As
a distribution on Γ\H, it satisfies an analogue of the Poisson’s equation

(4+
s2 − 1

4
)ΨΓ

η (s) = δCΓ(η), Re(s) > 1,
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where δCη(η) is the distribution on Γ\H defined by the linear functional f 7→ ∫
CΓ(η) f ds.

(3) If y >
√

D
2 , we have the Fourier series expansion of Ψη(s):

−4√
2π

Γ((s + 3)/4)
Γ((s + 1)/4)

ΨΓ
η (s; τ) = 2−s/2D(s+1)/4 ζ(Qη; s+1

2 )
s ζ(s + 1)

y(1−s)/2

+
∑

A∈Z−{0}

{∑

n6=0

Sη(A,n)
|n|1/2

Js/2

(
π
√

D|A|
|n|

)}
(
√

Dy)1/2 Ks/2(2π|A|y) e−2πiAx,

where Js(z) is the Bessel function and Ks(z) the modified one.
(4) ΨΓ

η (s) ∈ Lp(Γ\H) if Re(s) > p−2
2p .

3.4 The heat kernel associated to η (cf. [7])

Let us define the free space (relative) heat kernel associated with η by

ψ̂η(T ; τ) def=
1
πi

∫ c+i∞

c−i∞
ψη(s : τ) e(−1+s2)T/4 sds

with two variables T > 0 and τ ∈ H. Here c > 1 is fixed. It turns out that the integral
is convergent and independent of the choice of c. Having this function, we define the
automorphic (relative) heat kernel associated with η by the series

Ψ̂Γ
η (T ; τ) def=

∑

γ∈Γη\Γ
ψ̂η(T ; γ〈τ〉).

Proposition 7. (1) The series Ψ̂Γ
η (T ; τ) is absolutely convergent for T > 0 and τ ∈ H. The

convergence is locally uniform with respect to (T, τ).
(2) The automorphic heat kernel Ψ̂Γ

η (T ) is related to the automorphic Green’s function ΨΓ
η (s)

by

Ψ̂Γ
η (T ; τ) =

1
πi

∫ c+i∞

c−i∞
ΨΓ

η (s; τ)e(−1+s2)T/4 sds (4)

whenever c > 1.
(3) The function Ψ̂Γ

η (T ; τ) is C∞ on (0,∞)× Γ\H and satisfies the ‘heat equation’:

− ∂

∂T
Ψ̂Γ

η (T ; τ) = 4Ψ̂Γ
η (T ; τ).

(4) Ψ̂Γ
η (T ) ∈ Lp(Γ\H) for T > 0, p > 0.

(5) The spectral expansion:

Ψ̂Γ
η (T ) =

∞∑

n=0

e−λnT

(∫

CΓ(η)
φn ds

)
φn(τ) + 1

4πi

∫

iR
e
−1+ν2

4
T

(∫

CΓ(η)
E(ν) ds

)
E(ν; τ) dν.

(5)
The convergence is uniform on any compact subset of Γ\H.
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4 Sketch of the proof of main results

The basic idea is this: consider the period integral of the automorphic heat kernel Ψ̂Γ
η (T )

along CΓ(η)

P̂Γ
η (T ) def=

∫

CΓ(η)
Ψ̂Γ

η (T ; τ) ds.

Then we compute this integral in two different ways. One by invoking the spectral expansion
(5) of ΨΓ

η (T ), and the other by putting the definition (4) of Ψ̂Γ
η (T ) and unfolding the integral.

4.1 The spectral side

Since CΓ(η) is compact and since the spectral expansion (5) of Ψ̂Γ
η (T ; τ) converges uniformly

on a compact set of Γ\H, the integration can be taken by term by term. Consequently, we
arrive at the expression:

P̂Γ
η (T ) =

∞∑

n=1

e−λnT

∣∣∣∣∣
∫

CΓ(η)
φn ds

∣∣∣∣∣
2

+ E(T ) + (log N(η))2

vol(FΓ) ,

E(T ) = 1
4πi

∫

iR
e
−1+ν2

4
T

∣∣∣∣∣
∫

CΓ(η)
E(ν) ds

∣∣∣∣∣
2

dν.

At least formally, we have

Γ(s) Zη
Γ(s) =

∫ ∞

0
{P̂Γ

η (T )− (log N(η))2

vol(FΓ) }T s−1dT.

Therefore, Theorem 4 and Theorem 5 follow from the following Proposition.

Proposition 8. We have the large time estimate:

P̂η(T )− (log N(η))2

vol(FΓ) = O(e−NT ), T → +∞.

with some N > 0. We have the small time asymptotic expansion:

P̂Γ
η (T ) ∼ T−1/2

(
log N(η)

2
√

π
+

∞∑

n=1

anTn/2

)
+ log T (

∞∑

n=0

bnTn),

The large time asymptotic is rather easy to establish; to show the small time asymptotic
expansion, we analyze the ‘geometric side’of the period P̂Γ

η (T ).

4.2 The geometric side

For unfolding the integral, it is more enlightening to lift the function ψ̂η(T ; τ) on H up to
G = SL2(R) by the diffeomorphism G/K 3 gK 7→ g〈i〉 ∈ H, where K = SO(2). Let Gη be
the centralizer of η in G. Then the lifted function g 7→ ψ̂η(T ; g〈i〉) on G is left Gη-invariant
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as well as right K-invariant. The following computation is quite standard.

P̂Γ
η (T ) =

∫

Γη\Gη

Ψ̂Γ
η (T ;h〈i〉) dh

=
∫

Γη\Gη

∑

γ∈Γη\Γ
ψ̂η(T ; γh〈i〉) dh

=
∫

Γη\Gη

∑

γ∈Γη\Γ/Γη

∑

δ∈(γ−1Γηγ∩Γη)\Γη

ψ̂η(T ; γδh〈i〉) dh

=
∑

γ∈Γη\Γ/Γη

∫

Γη\Gη

∑

δ∈(γ−1Γηγ∩Γη)\Γη

ψ̂η(T ; γδh〈i〉) dh

=
∑

γ∈Γη\Γ/Γη

∫

γ−1Γηγ∩Γη\Gη

ψ̂η(T ; γh〈i〉) dh

=
∑

γ∈Γη\Γ/Γη

v(γ) I(T ; γ)

with

v(γ) def= vol((γ−1Γηγ ∩ Γη)\(γ−1Gηγ ∩Gη)),

I(T ; γ) def=
∫

(γ−1Gηγ∩Gη)\Gη

ψ̂η(T ; γh〈i〉) dh.

4.2.1 Classification of double cosets

Let V2 be the space of all the binary quadratic forms with coefficients in R, i.e.,

V2
def= {P = AX2 + BXY + CY 2|A,B, C ∈ R }.

Then the group G = SL2(R) acts on V2 by the rule

(g−1P )(X, Y ) = P (aX + bY, cX + dY ), g =
(

a b
c d

) ∈ G, P (X, Y ) ∈ V2,

preserving the discriminant function V2 3 P = AX2 + BXY + CY 2 7→ ∆(P ) def= B2 − 4AC.
Let 〈P, Q〉 be the bilinear form on V2 associated with ∆(P ), i.e.,

〈P, Q〉 def=
1
2
{∆(P + Q)−∆(P )−∆(Q)}.

For g ∈ G, set

Bg
def=

〈gQη, Qη〉
∆(Qη)

.

Then the map g 7→ |Bg| yields a bijection Gη\G/Gη
∼= R>0. The double cosets ΓηγΓη are

divided to 3 classes according to the value of |Bγ |:
? The coset Γη, which is the one with |Bγ | = 1.

(v(e) = vol(Γη\Gη) = log N(η)).
? (‘Pseudo-elliptic cosets’) Finite number of ΓηγΓη with |Bγ | < 1.

(γ−1Gηγ ∩Gη = {±12} and v(γ) = 1)
? (‘Pseudo-hyperbolic cosets’) Infinite number of ΓηγΓη with |Bγ | > 1.

(γ−1Gηγ ∩Gη = {±12} and v(γ) = 1.)
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According to this classification, we can write the integral P̂Γ
η (T ) as a sum of the three

terms:

P̂Γ
η (T ) = I(T )=1 + I(T )>1 + I(T )<1

with

I(T )=1 = log N(η) I(T ; e), (Single term),

I(T )>1 =
∑

γ∈Γη\Γ/Γη ;|Bγ |>1

I(T ; γ), (Infinite sum),

I(T )<1 =
∑

γ∈Γη\Γ/Γη ;|Bγ |<1

I(T ; γ), (Finite sum).

(This expression affords the ‘geometric side’of the period P̂Γ
η (T ).) Therefore, it suffices to

study the asymptotic of these terms separately.

4.2.2 Asymptotic of I(T )=1

Lemma 9. We have

I(T ; e) = 1
8π

∫ ∞

0

∣∣∣∣∣
Γ

(
1+it

4

)

Γ
(

3+4it
4

)
∣∣∣∣∣
2

t tanh
(

πt
2

)
e−(1+t2)T/4 dt.

Lemma 10. There exists constants an, bn such that for any N ∈ N the estimation

I(T ; e) = T−1/2

(
1

2
√

π
+

2N+1∑

n=1

anTn/2

)
+ log T (

N∑

n=0

bnTn) + O(TN+1/2) near T = 0

holds.

This affords the leading term of the small-time asymptotic of P̂Γ
η (T ).

4.2.3 Asymptotic of I(T )>1

Lemma 11. The integral I(T ; γ) with |Bγ | > 1 is given as

I(T ; γ) = −1√
2πi

∫

Lc

Γ
(

s+1
4

)
Γ

(
s+2
2

)

Γ
(

s
2

)
Γ

(
s+3
4

) fs(B2
γ) e(−1+s2)T/4 ds,

with

fs(z) =
Γ

(
s+1
4

)2

Γ
(

s+2
2

) (z − 1)−
s+1
4 2F1

(
s+1
4 , s+1

4 , ; s+2
2 , −1

z−1

)

Here Lc : s = c + it (−∞ < t < +∞) with c > 1.

Lemma 12. For any N ∈ N,

∂N

∂TN
I(T ; γ) = O

(
b−1/4
γ

(
log bγ

T

)2N
exp

(−(log bγ)2

16T

))
, T > 0, bγ = B2

γ − 1.

Remark 4. Since Bγ ∈ Q, bγ = B2
γ − 1 6= 1.

This yields

Lemma 13. We have

lim
T→+0

∂N

∂TN
I(T )>1 = 0

for any N ∈ N.

39



4.2.4 Asymptotic of I(T )<1

Lemma 14. The integral I(T ; γ) with |Bγ | < 1 is given as

I(T ; γ) = −1√
2πi

1
2π

∫

iR

∣∣∣∣∣
Γ

(
s+1
4

)

Γ
(

s
2

)
∣∣∣∣∣
2

Fs(B2
γ) e(−1+s2)T/4ds,

with

Fs(z) = 1
2πi

∫

Lσ

Γ
(

s+2
4 + ζ

)
Γ

(−s+2
4 + ζ

)
Γ

(−1
4 − ζ

)2 (1− z)ζ+ 1
4 dζ.

Here Lσ is the contour ζ = σ + it (−∞ < t < +∞) with −1/2 < σ < −1/4.

By shifting the contour Lσ to the negative direction, after an involved argument, we
obtain

Lemma 15. For any N ∈ N, the limit limT→+0
∂N

∂T N I(T )<1 exists.

4.2.5 Asymptotic of E(T )

Since ζ(Qη; s) originally given by a convergent Dirichlet series on Re(s) > 1 has a meromor-
phic continuation to C with the functional equation

ζ̂(Qη; s) = ζ̂(Qη; 1− s),

by a standard technique, we obtain the convexity bound of ζ(Qη; s) on the critical line:

ζ
(
Qη; 1

2 + it
) ≺ (1 + |t|)1/2+ε, t ∈ R

for any ε > 0. A better bound breaking this is called a subconvexity bound, which is enough
for us to eliminate the Eisenstein period from the asymptotic law in Theorem 5:

Theorem 16. Suppose a bound ζ(Qη; 1/2+ it) ≺ (1+ |t|)1/2−ε is true for some ε > 0. Then

∑

λn6x

∣∣∣∣∣
∫

CΓ(η)
φn ds

∣∣∣∣∣
2

∼ log N(η)
π

x1/2, x → +∞.

Remark 5. The following fact is proved by Katok-Sarnak [1]: If φn is a normalized Hecke
eigen Maass cusp form on SL2(Z) with L(φn, 1

2) = 0, then

∑

[η]∈Q(D)

∫

CΓ(η)
φn ds = 0

for each discriminant D > 0. Q(D) the set of Γ-conjugacy classes of primitive hyperbolic
elements with tr(γ)2 − 4 = D.

5 Concluding remarks

Let me put some remarks. First, for a cocompact lattice Γ (arising from a indefinite quater-
nion division algebra over Q), our main result (Theorem 4 and Theorem 5) is true. In this
case, it is proved that the convergence region of Zη

Γ(s) is Re(s) > 1/2. Second, we have a
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twisted version also. Let χ be a character of R× such that χ(N(η)) = 1. Then we define the
χ-twisted period of φ as

∫

CΓ(η)
φχds def=

∫ log N(η)

0
φ(Rη〈e2ti〉)χ(et) dt.

About this χ-twisted period and the associated spectral type zeta function we have a similar
result. Actually, we generalize this twisted version to real hyperbolic spaces of higher di-
mension, and have a result which includes Theorem 4 and Theorem 5 as a special case ([8]).
In some cases, the Eisenstein contribution is much more difficult to separate in the asymp-
totic law like Theorem 5; we need a (yet to be proved) quite strong subconvexity bound on
the critical line of a certain automorphic L-function of an orthogonal group. Finally, our
construction of Zη

Γ(s), at least formally, can be generalized for an arbitrary triple of groups
(G,H, Γ) such that G and H are semisimple Lie groups with H sitting inside G and Γ is a
lattice of G such that Γ ∩H is a lattice of H. When H is a symmetric subgroup of G such
that the split rank of the symmetric space H\G is one and when Γ is a cocompact lattice
in G, we have some guess how the analogue of Weyl’s law for the average of the the norm
square of periods of Maass forms should look like.

Let me put some problems. It seems interesting to have an error term estimate in
Theorem 5. Various generalizations of the spectral zeta function with period Zη

Γ(s) are
probably possible. For example, for two primitive hyperbolic elements η, ξ ∈ Γ, we can
consider the series

Zη,ξ
Γ (s) def=

∞∑

n=1

1
λs

n

(∫

CΓ(η)
φn ds

)(∫

CΓ(ξ)
φn ds

)
+ Eisenstein part

which reduces our Zη
Γ(s) when η = ξ and has a non-empty convergence region. Beyond this,

we know nothing about Zη,ξ
Γ (s).
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