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In [7], we happened to consturct Siegel modular cuspform F and non-cuspform E of
degree 2 having the same spinor L-function (of degree 4):

L(s,E, spin) = L(s, F, spin).

In the theory of automorphic form of GSp2(Q), it is known that Cuspidal Associated
Parabolic representation (denoted by CAP) has a L-function of a non-cuspidal one. However
our phenomenon is not the case. In this article, we explain the reason why such a strange
phenomenon occures.

By the way, the spinor L-function is equal to the Hasse-Weil zeta function of the jacobian
of C : y2 = x5 − x, that is,

L(s,E, spin) = L(s, F, spin) = L(s,H1
et(j(C),Q)).

This coincidence of L-function of Siegel modular form and that of Abelian surface is a
concrete example of Yoshida’s Siegel modularity conjecuture of Abelian surface [14].

1 L-parameter

Now then, we are going to explain the reason of such a strange phenoneon.

1. Determine L(s,H1
et(C,Ql)).

The hyper-ellitpic curve C has a complex mutiplication such as

C : y2 = x5 − x 3 (x, y) −→ (ix, i
1
2 y) ∈ C,

that is End(j(C))⊗Q ' K = Q(i
1
2 ). Thanks to Shimura-Yoshida’s CM-theory [13], we can

determine the Großencharakter λ on K×
A so that

L(s, λ) = L(s,H1
et(C,Ql)).

Further, we can write
λ = µ ◦NK/Q(

√−2)

for a certain µ on Q(
√−2)×A , consequently

L(s, λ) = L(s, µ)L(s, µ). (1)

2. Two L-homomorphisms LGL2(Qp) → LGSp4(Qp).
From the above µ, we get an elliptic cuspform θµ by

θµ(z) =
∑

α⊂Z[
√−2]

µ(α) exp(2πiN(α)z) ∈ S2(Γ0(64), χQ(
√

2)), (2)
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where χQ(
√

2) is the quadratic character associated to the extension Q(
√

2)/Q.
Now, we consider the L-parameter associated to θµ, homomorphism from Gal(Qp/Qp)

to GL2(C)×Gal(Qp/Qp), and consider two L-homomorphisms

LGL2(Qp) −→ GSp4(C) = LGSp4(Qv)◦

One is




GL2(C) 3 ( a b
c d

) −→




a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d




Gal(Qp/Q) 3 Frobp −→




1 0 0 0
0 χk(p) 0 0
0 0 1 0
0 0 0 χk(p)




(3)

with k = Q(
√

2). This L-homomorphism preserves the central characters of automorphic
representations, i.e.,

ωπ = ωΠ0 (4)

where π is the automorphic representation associated θµ, and Π0 is that to the image of
the above L-homomorphism. Indeed, if the conjugacy class of the L-parameter of π is

( α
ωπα

), the image of the L-homomorphism is




α 0 0 0
0 χk(p)α 0 0
0 0 ωπα 0
0 0 0 χk(p)ωπα


. (5)

Another L-homomorphism is as follows. That is a path to GSp4(C) through LGL2(kp) =
GL2(C)2 oGal(Qp/Qp) at p in case of χk(p) = −1:





g = ( a b
c d

) −→ g × g −→




a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d


,

Frobp −→




0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0


.

(6)

Then, the image Π1 of
(
( α

ωπα
)× ( α

ωπα
)
)
o Frobp is




0 −iα 0 0
iα 0 0 0
0 0 0 iα
0 0 −iα 0


 ∼




α 0 0 0
0 −α 0 0
0 0 α 0
0 0 0 −α


 (7)

as GSp4(C)-conjugacy class. This L-homomorphism doesn’t preserve the central character
of π, different from (4),

ωπ = χkωΠ1 . (8)
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Comparing (5) and (7), we find that Π0 and Π1 has the same L-function.
But, Zharkovskaya relation (explained in the next section) implies Π0 should be cuspidal

and Kudla-Rallis-Soudry’s characterization [6] for standard L-function of cuspidal represen-
tation implies Π1 should be non-cuspidal. And by the Yoshida lift [14], we really constructed
the cupsform F and non-cupsform E. This is the explanation of the strange phenomenon.
Furhter discussion on the Yoshida conjecture is held in [8], [9]. Now, we consider the prob-
lem when such a strange phenomenon occures? In order to answer it, we will classify the
L-functions of Siegel non-cuspforms in the next section.

Remark 1.1. Since S2(Γ0(64), χ2) = Cθµ ⊕ Cθµ, and (1), we find that j(C) is isogeneous
to the jacobian obtained from the Shimura curve.

2 Generalization of Zharkovskaya relation

The original ‘Zharkovskaya relation’ is a relation between L-functions of Siegel non-cuspform
and the elliptic modular form which is sended by the Siegel operator. If F is a full modular
Hecke eigenform non-cuspform of degree 2 of weight κ, then the Siegel operator sends an
elliptic modular eigenform Φ(F )

Mκ(Sp2(Z)) 3 F −→ Φ(F )(z) = lim
t→∞F ( z 0

0 it
) ∈ Mκ(SL2(Z)) (9)

for z ∈ H, and it holds

L(s, F, spin) = L(s,Φ(F ))L(s− κ + 2,Φ(F )).

We will generalize her relation for non-holomorphic and non-full modular cases. Let Ui, i =
1, 2 be the unipotent radicals of the two parabolic subgroups.

U1(A) =




1 ∗ ∗
1 ∗ ∗

1
1


 , U2(A) =




1 ∗
∗ 1 ∗ ∗

1 ∗
1


 ⊂ Sp2(A).

If F is not cuspidal, then
∫

Ui(Q)\Ui(A)
F (ug)du 6= 0

for i = 1 or 2 with a Haar measure du of Ui. We say the former case (CASE 1), and the
latter (CASE 2). In the both cases, we obtain automorphic forms on GL2(A) by

∫

Ui(Q)\Ui(A)
F (u · ei(g))du,

where we write

e1(g) = (
tg−1

g
), e2(g) =




a b
det(g)

c d
1


 ∈ GSp2(A)

for g = ( a b
c d

) ∈ GL2(A). So, after the original (9),
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Definition 1. We call ‘Siegel operator along Ui’

Φi(F )(g) =
∫

Ui(Q)\Ui(A)
F (u · ei(g))du,

where du is the Haar measure so that vol(Ui(Q)\Ui(A)) = 1.

Remark that the Siegel operator (9) is equal to Φ2, and that holomorphic F is cuspidal
if and only if Φ2(F ) = 0.

Classical form and Adelic form: Let Γ be a congruence subgroup containing a principal
congruence subgroup Γ(N) and every element

γ ≡
( a

b
a−1

b−1

)
(mod N)

with a, b prime to N . Let χ1, χ2 be Dirichlet characters of Q× (the adelized character also
denote by χi). We say a vector valued function f on the Siegel upper half space H2 classical
form and write f ∈ Mκ1,κ2(Γ, χ1, χ2), if

f(γZ) = sym(κ1 − κ2)⊗ det κ2(cZ + d)χ1(d1)χ2(d2)f(Z)

for every γ = ( ∗ ∗
c d

) ∈ Γ, d = ( d1 ∗
∗ d2

). An automorphic form F on GSp2(A) is associated

by

F (g∞) = ν(g∞)2κ2+3sym(κ1 − κ2)⊗ det κ2(ci2 + d)f(g∞ · i2) (10)

with i2 = ( i
i

) ∈ H2 for ν(g∞)−
1
2 g∞ = ( ∗ ∗

c d
) ∈ GSp2(R), where ν is the similitude

norm of g∞. By the strong approximion theorem of GSp2(A), we can derive from (11) the
automorphic form on GSp2(A). If f is holomorphic, we say F is holomorphic. Classical
elliptic modular form h of weight κ is also associated to adelized form H by

H(g∞) = ν(g∞)κ+1(ci + d)κh(g∞ · i) (11)

for g∞ ∈ GL2(R).

L-function: Hecke operator is spherical function of GSpn(Qp) with compact support. The
action of Hecke operator η on an automorphic form f is

η ∗ f(g) =
∫

GSpn(Qp)
f(gh)η(h−1)dh

where dh is the Haar measure such that vol(GSpn(Zp)) = 1. If η is corresponding to the
linear combination of right GSpn(Zp)-coset such as

∑
ai

ai(
tDip

−li ∗
D−1

i

)GSpn(Zp)

with ai ∈ C and

Di =

( pri1 ∗ ∗
. . . ∗

prin

)
,
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Satake isomorphism associates to

∑

i

(X0)li

n∏

j=1

(p−jXj)rij ∈ C[X±
0 , X±

1 , . . . , X±
n ]Wn

where Wn is the Wile group. The C-algebara homomorphism from the Hecke algebra H to
C is parametrized by the value αj of Xj , the Satake parameter. For Hecke eigenform F the
spinor L-function is defined by

L(s, F, spin) =
n∏

r=0

∏

1≤i1<···<ir≤n

(1− α0αi1 . . . αirp
−s)

and standard L-function is

L(s, F, st) = (1− p−s)−1
n∏

i=1

(1− αip
−s)−1(1− α−1

i p−s)−1.

We note that, by (10), (11), the definition of spinor L-function coincides with the classical L-
function. In GSp2 case, the classical one was called Andrianov L-function. In GL2 = GSp1

case, the classical L-function coincides with the L-function of the Galois representation
associated to elliptic modular form.

Fourier expansion: We fix the standard additive character ψ on Q\A (ψ∞(x) = exp(2πix)
for x ∈ R). For automorphic form F and a symmetric matrix T ∈ M2(Q), letting

FT (g) =
∫

U1(Q)\U1(A)
ψ(−tr(S · T ))F (( 1 S

1
)g)dS,

the Fourier expansion of F is given by

F (g) =
∑

T∈Sym2(Q)

FT (g).

The Fourier expansion of f on GL2(A) is f(g) =
∑

a∈Q fa(g), similarly.

(CASE 1) In this case,

F0(e1(g)) = f(g) 6= 0. (12)

Suppose that F is an eigenform. Then there exists δ ∈ ̂(Q\A)× such as

F0((
tg−1

g
)( 12

t · 12
)) = δ(t)F0((

tg−1

g
)). (13)

Since F0 and f have the informations of L-paramerters of themselves, by comparision of the
actions of Hecke operators on them, we can obtain:

Theorem 2.1. Under (12), f is also an eigenform outside of bad primes of F . And it holds

L(s, F, ωfδ, spin) = ζ(s− 3)L(s− 3, ω−1
f )L(s− 3, f),

L(s, F, st) = ζ(s)L(s, f)L(s, f, ω−1
f )

where L(s, F, ωfδ, spin) is the ωfδ-twist of L(s, F, spin), and L(s, F, st) is the standard L-
function of F .
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If F is holomorphic, then by (12) the followings should hold

• f is a nonzero constant.

• κ1 = κ2, i.e., F is scalar valued, of weight κ1.

• χ1 = χ2.

In particular, the L-functions of F are described as follows:

Corollary 2.2. Assume (12) and that F is holomorphic. Then, at every good place of F ,

L(s, F, spin) = ζ(s)L(s− 1, χ1)ζ(s− κ1 + 2)L(s− κ1 + 3, χ1),
L(s, F, st) = ζ(s)L(s, χ1)L(s, χ−1

1 )L(s− 1, χ1)L(s− 1, χ−1
1 ).

(CASE 2) In this case, we exclude the (CASE 1). Then,

FTα(g) 6= 0

with Tα = ( α 0
0 0

) for some α ∈ Q×. For x ∈ A,

FTα(




1 x ∗
∗ 1 ∗ ∗

1 ∗
1


 e2(g∞)) = ψ(αx)FTα(e2(g∞)). (14)

The Fourier expansion of f = Φ2(F ) is

f(g) =
∑

α∈Q
FTα(e2(g)).

Suppose that F is an eigenform. Then, it holds that, for some χ2, δ ∈ Q̂×\A×,

FTα(




a
b

a
b−1a2


 e2(g∞)) = ωf (a)χ2(b)δ(a)2FTα(e2(g∞)) (15)

for every a, b ∈ A×. As well as (CASE 1), by the comparison of the actions of Hecke
operators on FTα and f , we can obtain:

Theorem 2.3. Under the above assumptions,
i) If χ2∞(z) 6= z2 or χ2p(p) 6= −p−2, then f is also an eigenform at p with

L(s, F, spin) = L(s, f, χ−1
2 )L(s−m2 + 2, f), (16)

L(s, F, st) = ζ(s)2L(s + m2, χ
−1
2 )L(s, f ⊗ (f × χ−1

2 )) (17)

at p. Here m2 is the index of χ2∞, and ⊗ means the Rankin-Selberg convolution.
ii) Ohterwise, although f |SL2(Qp) is still an eigenform at p, but, not an eigenform on
GL2(Qp) in general. However, there exists an eigenform f ′ which satsifies

• ωf ′ = ωf ,

• f ′(g) + f ′(tg−1) = f(g).
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• f ′ keeps the relation (16), (17), in stead of f .

Remark 2.4. In the case that F is holomorpchic and its highest weight is (κ1, κ2), the
index m2 in Theorem 2.3 is κ2, and f is of weight κ1.

Summing up the above results,

Theorem 2.5. If a cuspform and a non-cuspform have the same spinor L-function, then
the L-function is one of the following form

• (CAP type) ζ(s− κ
2 +1)L(s+ κ

2 , ω−1
f )L(s, f) for some automorphic form f on GL2(A)

of weight κ, or

• (Base change lift type) L(s, f)L(s, f, χk) for some automorphic form f on GL2(A)
and the quadratic character χ associated a quadratic extension k/Q.

Remark 2.6. Conversely, we give many pairs of cuspform and non-cuspform having the
same spinor L-function in [9].

In the GL(2)-case, the cuspidality of automorphic form is characterized by the entireness
of L-function. Combining the above results and Kudla-Rallis [5], in the GSp(2)-case, we
can characterize, similarly.

Theorem 2.7. For an irreducible tempered Π on Sp2(A) which is not CAP, Π is cuspidal,
if and only if the following two conditions are satisfied.

• ords=1L(s, F, η, st) ≥ −1 for any η ∈ Q̂×\A× such that η2 = 1.

• ords=1L(s, F, η, st) ≥ 0 for any η2 6= 1.
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