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What Type of Apollonian Circle Packing
Will Appear?

Jan E. Holly

Abstract. An Apollonian circle packing is created by starting with three pairwise tangent
circles, adding the two circles—or circle and line—tangent to the first three, then repeating
the process forever by successively adding new circles and lines tangent to every new tan-
gent threesome of circles and/or lines. The resulting packing is one of four types: bounded
(enclosed by one of the circles), half-plane (with one line), strip (with two lines), or full-
plane. Given three starting circles, what type of Apollonian circle packing will appear? This
article gives an answer in the form of a picture, i.e., a plot in the parameter space of relative
sizes of the starting circles, indicating the types of packings. The result is a fractal, which is
then further explored.

1. THE PROBLEM. Draw three circles that are pairwise externally tangent. Then
draw the two circles, or circle and line, that are tangent to all of the first three. Notice
that the “outside circle” either surrounds the first three, is a line instead of a circle, or
is externally tangent to the first three, as in Figure 1.

Figure 1. Possible arrangements of the next two tangent circles (thin), or circle and line, given three tangent
circles (thick).

Now, for each newly existing threesome of pairwise tangent circles and/or lines,
draw the missing circle or line that is tangent to all three. Repeating this process forever
makes an Apollonian circle packing that is either bounded, half-plane, strip, or full-
plane, as shown in Figure 2. Note that parallel lines are considered tangent at infinity.

What type of packing will appear when starting with a given three circles? Surely,
“most” of the time, a bounded packing will appear. Particularly intriguing is a full-
plane packing, whose existence is not immediately obvious in the first place. Never-
theless, as explained in Section 2, all four types of packing are known to be possible,
but a definitive test for determining the resulting type is surprisingly elusive.

The goal of this article is to produce an answer in the form of a picture. The develop-
ment of a picture leads to new results and a way to visualize the answer, even though
infinite precision would be required in order for the picture to be a definitive test.
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Figure 2. The four types of Apollonian circle packings. For all except the bounded packing, only a small
piece is shown; circles are chopped off at the edges of the images, and infinitely many more circles exist in the
directions indicated by the name of the type of packing. The bounded packing illustrated here arises from the
rightmost example of Figure 1, and the strip packing arises from the middle example of Figure 1.

Above all, the goal is to have some fun, and create a playground for additional inquiry
and exploration.

Because the type of packing depends solely on the relative sizes of the starting
circles, some terminology is helpful. To facilitate phrasing of the new results, circle
will mean an actual circle, not a line, although some results will apply equally to lines
or can be extended to include lines.

Definitions. For purposes of this article, a trio is a set of three pairwise externally
tangent circles. If r1 ≥ r2 ≥ r3 are the radii of the circles, then the ratio pair of the trio
is (r2/r1, r3/r2) ∈ (0, 1] × (0, 1]. A triple is the same as a trio but allows one of the
circles to instead be a line, in which case the ratio pair is (0, r3/r2) where r2 ≥ r3 are
the radii of the circles.

Triples with the same ratio pair obviously generate packings that are equivalent
under similarity, i.e., under compositions of translations, reflections, rotations, and/or
scalings. Therefore, a ratio pair is said to generate a bounded, strip, half-plane, or
full-plane packing if a triple with that ratio pair does.

Because a triple’s ratio pair determines the type of packing, the picture answer
developed in this article will be a plot of the unit square of ratio pairs, indicating
which ratio pairs correspond to which of the four types of packings in Figure 2. Pre-
sented here are two complementary approaches to the development of the plot, which
is displayed in Figure 6. The first approach—presented in Sections 3 and 4—is the
more constructive one, requires no previous background, and suggests new avenues
for exploration. The second approach—outlined in Section 5—comes from the view-
point of projective geometry, and provides an understanding of the general structure
of the picture answer. It is possible to skip Section 5, jumping straight into the explo-
ration in Section 6, which takes a closer look at the result, and gives ideas for further
exploration. Prior to both approaches, Section 2 provides relevant background.
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2. KNOWN FACTS. An important ingredient in the study of Apollonian packings is
the relationship between the radii of the tangent circles. A nice formula exists using
curvature (= 1/radius). For a triple with curvatures a, b, and c, the curvatures of the
two circles—or circle and line—tangent to the triple are given by

d = a + b + c ± 2
√

ab + ac + bc, (1)

where negative curvature means that the circle surrounds the triple. Proving this for-
mula is not as easy as it looks. The reader is welcome to try, or to look at various proofs
such as those in [17, 23, 24] and [7, pp. 14–15], which use a symmetric version that
can be stated as follows.

Descartes Circle Theorem. For a triple with curvatures a, b, and c, the curvatures of
the two circles—or circle and line—tangent to the triple are the values of d that satisfy

2(a2 + b2 + c2 + d2) = (a + b + c + d)2. (2)

By symmetry in this equation and by allowing negative curvature, (1) and (2) can
be used for all arrangements of tangent circles and lines that appear in an Apollonian
packing. For delightful expositions of the history, see [6, 18, 25]; for the Descartes
portion of the history, see also [2] for a discussion of the role that the work of Princess
Elisabeth Simmern van Pallandt of Bohemia played in Descartes’s proof.

Bounded packings are the most studied type. This is partly because they are fun
to draw, but also due to the fascinating fact that infinitely many different bounded
packings can be created using only integer curvatures. Integral Apollonian packings
whose circles’ curvatures have greatest common divisor 1 are called primitive integral
Apollonian packings by the authors of [11], who classified them and pointed out that
the only unbounded primitive integral Apollonian packing is the strip packing with
largest circles having radius 1. (This fact can be seen geometrically, as explained in
the discussion about properties after Proposition 2.1, considering that every integral
packing is equivalent by scaling to a primitive integral packing.) Underlying the work
on integral packings is the observation that for the two solutions, d1 and d2, to (1),

d1 + d2 = 2a + 2b + 2c. (3)

Therefore, by starting with four pairwise tangent circles and/or lines, all curvatures
in the packing can be calculated by systematic application of (3), which implies that
integer curvatures lead to integer curvatures. Mathematicians have pounced upon this
enticing fact, producing questions and results too numerous to discuss here. A nice
introduction is given in [25], and more extensive surveys can be found in [3,10,15,22].

The fact that an integral Apollonian packing must be either bounded or a strip pack-
ing implies the following, stated in the terminology of the present article.

Proposition 2.1. If triple T has ratio pair (x, y) with x, y,
√

xy2 + xy + y ∈ Q, then
the Apollonian packing generated by T is either a bounded packing or a strip packing.

Proof. Given such a triple T , let a ≤ b ≤ c be the curvatures of the members of T , so
(x, y) = (a/b, b/c). Scaling by 1/c gives a triple with curvatures a/c = xy, b/c = y,
and 1. From this triple, equation (1) and the hypothesis of the proposition show that
the set consisting of T and a fourth tangent circle or line is equivalent by scaling to a
set of four with rational curvatures. Equation (2) implies that scaling again can give a
set of four with integer curvatures, which therefore generates either a bounded packing
or a strip packing.
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Figure 3. Starting with {C, C′, L}, example of successive circles — 1st, 2nd, 3rd — that are tangent to L to
the left or right of the circles so far. Such a process continues forever unless a second line appears due to the
two largest circles having the same radius. Circles labeled C′′ and C′′′ are used in the proof of Lemma 3.2 to
illustrate the creation of a tent with floor C. (Tents are discussed in Section 3.) The curvilinear triangles labeled
“upper” and “lower” are used in the proof of Lemma 3.3 to show possible locations of a circle D.

It turns out that there is only one strip packing up to similarity. This can be deduced
from properties of the constructions of packings, explained here using additional ter-
minology.

Definitions. The circles in the initial trio comprise the 0th generation. For each n > 0,
the nth generation is composed of all new circles and/or lines tangent to the triples so
far, i.e., up through the (n − 1)st generation.

Surrounded by a triple means “contained in the solid, closed triangle whose vertices
are the points of intersection of the members of the triple.”

The outside circle for a triple is the circle tangent to the members of the triple but
not surrounded by the triple. Some triples do not have an outside “circle” because they
have a line that is tangent instead.

A property that holds through certain generations of a construction of a packing
is the existence of a surrounding triple after each generation. For example, in the 1st
generation, if the outside circle for the initial trio is externally tangent as in the right-
most example of Figure 1, then there is a trio that surrounds all of the other circles up
through the 1st generation. This property clearly perpetuates itself: For each succes-
sive generation in which the outside circle for the previous generation’s surrounding
trio is externally tangent to that trio, there is a new trio that surrounds all of the other
circles up through the current generation. This behavior can be seen, for example, by
starting with any trio in the full-plane packing of Figure 2.

Next, if a (first) line appears, then that line becomes part of a surrounding triple
for the packing through the current generation. This property of having a surrounding
triple perpetuates itself through subsequent generations that do not produce a second
line. Figure 3 illustrates the addition of new outside circles.

As a side effect, these sequences of surrounding trios and triples cause full-plane
and half-plane packings to have increasingly larger circles and therefore nonintegral
curvatures, proving that only bounded and strip packings can be integral as mentioned
above in the discussion about bounded packings.

To obtain a strip packing, the second line can appear only by being tangent to the
surrounding triple of the previous generation, which means that the triple’s two circles
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must be the same size. Such a packing can also be generated by starting with those two
circles and a line, a fact mentioned later (Fact 3.1), so all strip packings are equivalent.
Thus, Proposition 2.1 has a converse for strip packings.

Proposition 2.2. If triple T with ratio pair (x, y) generates a strip packing, then
x, y,

√
xy2 + xy + y ∈ Q.

Proof. Given such a triple T , let a ≤ b ≤ c be the curvatures of the circles and/or line.
Because this triple’s packing is equivalent to the primitive integral strip packing, the
integral strip packing can be generated by a triple whose members have curvatures
sa, sb, sc ∈ Z for some s ∈ R. Clearly, x, y ∈ Q. Next, equation (1) with sa, sb,
and sc in place of a, b, and c, respectively, must give integer values for d because
all circles in the integral packing have integer curvatures. Dividing by sc leads to√

xy2 + xy + y ∈ Q.

A related result was provided by Ching and Doyle [4] who considered pairs of
tangent circles tangent to a line. In that context, the main result was a complete classi-
fication of half-plane packings up to equivalence, and one corollary was the following
distinction between strip and half-plane packings.

Proposition 2.3. Let T be a triple with ratio pair (0, y). Then T generates a strip
packing if and only if

√
y ∈ Q.

Proof. For a triple T with ratio pair (0, y), if
√

y ∈ Q then Proposition 2.1 implies
that the packing generated by T must be a strip packing because a bounded packing
has no line and thus no triple with ratio pair (0, y).

The converse follows from Proposition 2.2.

Half-plane and full-plane packings require irrational curvatures. This is because any
subset of four pairwise tangent circles with rational curvatures is equivalent by scaling
to a set with integer curvatures, which leads to an integral packing. Do half-plane and
full-plane packings even exist? The answer is “yes,” most immediately because self-
similar packings can be generated by starting with carefully chosen curvatures. For
example, one self-similar half-plane packing stems from curvatures a = 0, b = φ + 1,
and c = 1, where φ = 1+√

5
2 is the golden ratio. Self-similarity is quickly apparent by

looking at the successively larger circles that appear on alternating sides of the circles
with curvatures b and c. The next circle has curvature d = 1

φ+1 as confirmed by (2),
so d/c = c/b which gives a scaled symmetry that repeats forever as larger circles are
added on alternating sides. This half-plane packing is shown in Figure 2.

A self-similar full-plane packing can be generated by letting a = 1 and solving (2)
for b and c with conditions b = c/b = d/c. This equation can be solved by writing c

and d in terms of b, and then rearranging and factoring:

(b2 − (1 + √
5)b + 1)(b2 − (1 − √

5)b + 1)(b2 + 1) = 0.

Only the first factor has real roots. Choosing the solution b = φ − √
φ < a = 1 gives

a > b > c > d and successively larger circles spiraling outward. This full-plane pack-
ing is shown in Figure 2. Other self-similar half-plane and full-plane packings can also
be created.

3. TENTS. The pursuit of a picture begins with new definitions that lead to unique-
ness results. This section focuses primarily on situations in which a line exists, because
half-plane and strip packings provide the framework in Section 4 for the development
of a picture.
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Definitions. A tent is a trio for which there exists a line tangent to all three circles.
The smallest circle is the floor of the tent, and the other two circles are the sides of the
tent, as illustrated in Figure 3. In an Apollonian packing generated by a tent, a circle
or set of circles is inside the tent if it is in the interior of the triangle whose vertices
are the points of tangency of the members of the tent, and a tent collection is the set of
circles consisting of a tent and the circles inside the tent.

The proofs assume the ability to visualize the geometry of tents, as well as the
manner in which circles become arranged when generating an Apollonian packing.
Also used implicitly is the following fact:

Fact 3.1. In an Apollonian packing, any set of three pairwise tangent circles and/or
lines would produce that same packing.

A direct way to prove this is by finite induction on the generations during construc-
tion of a packing, using the symmetry of (2) to show that any set of three tangent circles
and/or lines in the packing will eventually produce the three from which the packing
was originally generated. Another proof is given in [4], making use of the fact that the
complement of the union of open disks associated with the circles in an Apollonian
packing has Lebesgue measure zero [12, 14]. Alternatively, a proof could appeal to
the Apollonian group generated by 4 × 4 matrices stemming from (2) and acting on
quadruples of curvatures, introduced by Hirst [13] with subsequent elaboration and
results in [1, 11]. The Apollonian group involves only curvatures, but positions can be
addressed by using results in [16] about the circles’ centers.

Lemma 3.2. In a half-plane or strip packing, each circle C tangent to exactly one line
is the floor of a unique tent, and the sides of the tent are the two largest circles tangent
to C.

Proof. Fix a half-plane or strip packing, and let C be a circle tangent to exactly one
line, L. By choosing a circle C ′ in the packing tangent to both L and C, construction of
the Apollonian packing from {L, C, C ′} will lead as in Figure 3 to a circle C ′′ (which
may be C ′) that is on the same side of C as C ′, is tangent to both C and L, and is larger
than C; the existence of such a C ′′ is perhaps geometrically intuitive, but also can be
deduced from equation (1). The construction then leads to a circle C ′′′ on the other side
of C that is larger than C and tangent to all of C ′′, C, and L. Therefore, {C, C ′′, C ′′′}
is a tent with floor C. It is clear from the construction and nature of an Apollonian
packing that C ′′ and C ′′′ are the only two circles tangent to and larger than C, so C

cannot be the floor of another tent.

Lemma 3.3. In a half-plane or strip packing:

(a) Each circle not tangent to a line is inside exactly one tent (and therefore is a
member of exactly one tent collection).

(b) Each trio is contained in exactly one tent collection.

Proof. Fix a half-plane or strip packing.
(a) Let D be a circle that is not tangent to a line. Let L be the line, or the closest

line in the case of a strip packing, since D clearly cannot be inside a tent tangent to
the other line due to the arrangement of circles and lines (as in Figure 2). Consider L

to be across the bottom of the packing.
Choose a triple {C, C ′, L} from which to construct the packing again; Figure 3

serves as an example. If {C, C ′, L} does not surround D (imagining D in its place in
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the completed packing), then successively add circles to the left and/or right of the
circles so far, in a similar procedure to that in Figure 3, until D is surrounded by
a triple. The circle that causes D to finally be surrounded, say C ′′′ in Figure 3 for
illustrative purposes, places D in either an upper or a lower curvilinear triangle. In
the former case, D is inside a tent such as {C, C ′′, C ′′′} in Figure 3. In the latter case,
or in the case that D is surrounded by the original triple {C, C ′, L}, successively add
smaller circles tangent to L in the latest curvilinear triangle containing D until one of
those circles is the floor of a tent with D inside.

Call the tent T and the floor F . To prove uniqueness of this tent, suppose for con-
tradiction that D is inside another tent T ′ with floor F ′. By Lemma 3.2, F ′ �= F . By
the geometry of tents, every vertical line segment between D and L must intersect the
floor F ′. Therefore, F ′ is tangent to L between F and a side of T ; for example, if
T = {C, C ′′, C ′′′} in Figure 3, then F ′ is in either the “lower” curvilinear triangle or
that between C ′′, C, and L. However, this means that T ′ cannot extend past F and that
side of T , so D cannot be inside T ′.

(b) Given a trio U , if U is a tent, then it is clearly contained in only its own tent
collection. Otherwise, let S �= ∅ consist of the members of U not tangent to a line.
By (a), each member of S is inside exactly one tent. The tangency of members of S

implies that they are all inside the same tent, say T with associated line L. It follows
that U is contained in the tent collection of T because each member of U \ S is tangent
to each member of S, and the only circles tangent to both L and circles inside T are
the members of T . Uniqueness follows from (a).

Lemma 3.4. Within a given tent collection, for each trio T there is at most one other
trio with the same ratio pair as T . If the tent is asymmetric, i.e., the sides’ radii are
not equal, then no two trios contained in the tent collection have the same ratio pair.

Proof. Suppose that trios T1, T2, and T3 have the same ratio pair and are contained
in the tent collection of tent {A, B, C}. Because T1 and T2 have the same ratio pair,
there is a similarity transformation taking T1 to T2 and the packing bijectively to itself.
Similarity transformations map tent collections to tent collections, so Lemma 3.3(b)
implies that T1’s tent collection maps to T2’s tent collection; thus {A, B, C} maps to
itself. If the tent is asymmetric, then the transformation must be the identity, so T1 =
T2, and by a similar argument, T1 = T3. If the tent is symmetric, then the only other
possible transformation is the reflection that swaps the sides of the tent. Therefore,
considering both transformations from T1 to T2 and from T1 to T3, at least two of T1,
T2, and T3 must be equal.

Definition. The tent ratio pair of a trio T is the ratio pair of the tent whose tent
collection contains T . The tent ratio pair of a ratio pair P is the same as that of a trio
with ratio pair P .

Theorem 3.5. There is a one-to-one correspondence between the following two sets.

I : The set of ratio pairs of trios that generate a half-plane or strip packing, exclud-
ing those with tent ratio pair (1, 1/4).

J : The set of trios of circles that are in a tent collection of a tent {A(t), B, C(t)}
with floor C(t) as shown in Figure 4, where the sides A(t) and B have curvatures
t ∈ (0, 1) and 1, respectively.

Proof. It suffices to show that the map from J to I taking each trio to its ratio pair is
one-to-one and onto.
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Figure 4. The parametrized set of tent collections for Theorem 3.5. Circles A(t), B, and C(t) are tangent to
the horizontal line, and all circles except B are parametrized by the curvature t of A(t). The curvature f (t) of
the tent’s floor C(t) is determined by equation (1).

First, notice that every possible ratio pair of a tent, with the exception of (1, 1/4),
is realized by {A(t), B, C(t)} for exactly one value of t ∈ (0, 1) because a tent’s ratio
pair (x, y) is determined by its sides, and every value x ∈ (0, 1] appears here except
x = 1 which corresponds to (x, y) = (1, 1/4).

To show that the map is one-to-one, suppose for contradiction that distinct trios T1

and T2 in J have the same ratio pair. Then T1 and T2 have the same tent ratio pair, and
therefore the same tent, {A(t), B, C(t)} for some t . This contradicts Lemma 3.4.

To show that the map is onto, consider a ratio pair P in I . Let T be a trio with
ratio pair P , and in the packing generated by T let T ′ be the tent whose tent collection
contains T . Let P ′ be the ratio pair of T ′. By definition of I , P ′ �= (1, 1/4), so let t

be such that {A(t), B, C(t)} has ratio pair P ′. The packings generated by T ′ and by
{A(t), B, C(t)} are then equivalent by a similarity transformation, and because T is
contained in the tent collection of T ′, its image, T ′′, is contained in the tent collection
of {A(t), B, C(t)}. Therefore T ′′, which has the same ratio pair as T , is a member of
J and has ratio pair P .

4. THE PICTURE. The key to developing a picture is to recognize that half-plane
and strip packings constitute borderline cases: Any triple in these packings is on the
brink of producing a bounded packing instead. A slight nudge of the circle sizes may
cause a line to curve inward and become a circle enclosing the packing. Triples in strip
packings, especially, teeter on a knife’s edge, with almost any nudge causing one of
the lines to enclose the packing.

More formally, ratio pairs that generate bounded packings form an open set in
[0, 1] × (0, 1], and the boundary of the open set consists of the ratio pairs that generate
half-plane and strip packings. If a plot displays that boundary, and if the open set for
bounded packings is thereby indicated, then all remaining ratio pairs in [0, 1] × (0, 1]
generate full-plane packings. If the strip-packing ratio pairs can somehow be distin-
guished from the half-plane packing ratio pairs on the bounded-packing boundary, then
the plot is a picture answer to the question of which type of packing will appear from
which starting triples.

The initial development of the plot is shown in Figure 5. Each curve is the para-
metric curve of the ratio pair as a function of t for a parametric trio in Figure 4. For
example, the curve for parametric trio {A(t), B, C(t)} is given by

x(t) = t

y(t) = 1/(1 + t + 2
√

t).

Each additional curve uses the relevant circles’ curvatures as determined by equation
(1) when generating the tent collection starting with {A(t), B, C(t)}. Because each
trio in Figure 4 leads to one new tangent circle and thus three new trios, there is,
in effect, a ternary tree of trios and therefore of parametric curves. The plots in Fig-
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Figure 5. Ratio pairs that generate half-plane and strip packings. The Stage 2 graph shows the parametric
curves of ratio pairs of triples in Figure 4 up through the 2nd generation of circles, considering the 0th gen-
eration to be {A(t), B, C(t)}. Arrowheads are at t = 1 on each curve. Parametric curves for the four triples
up through the 1st generation of circles are labeled by the triples, omitting “(t)” for ease of display. (The
curve BCD begins at x = 1; the other three begin at x = 0.) The Stages 3 and 4 graphs show the parametric
curves of the ratio pairs of triples involving circles up through the 3rd and 4th generation, respectively. Dots in
the Stage 3 graph indicate the intersections of curves, thereby identifying some ratio pairs that generate strip
packings.

ure 5 were developed in MATLAB [19] by coding this ternary tree. Upon seeing the
plots, deciphering the relationship between positions of trios in Figure 4 and loca-
tions of curves in Figure 5 turns out to be quite a puzzle, and a thorough labeling is
not attempted here. Instead, an investigation into the pattern of placements of curves
provides an intriguing topic for further exploration, as discussed in Section 6.

Technically, Figure 4 uses only t such that 0 < t < 1, but the curves’ endpoints
provide additional information, so consider also t ∈ {0, 1}. First, triples with t = 0
or t = 1 clearly generate strip packings. Also quite relevant is the nonuniqueness of
these triples in correspondence to ratio pairs, unlike those in Theorem 3.5 which has
0 < t < 1. For triples with t = 0 or t = 1, every triple except {A(0), B, C(0)} has at
least one other triple with the same ratio pair among the triples with t = 0 or t = 1,
possibly both. These matchings are discussed further in Section 6. In addition, many
such triples share a ratio pair with a triple among those with 0 < t < 1. For example,
the t = 0 triple of B, D, and the next circle between A, B, and D has the same ratio pair
as the t = 0.25 triple of A, B, and C. An important consequence of the nonuniqueness
of these triples is that intersections of curves in the plot indicate ratio pairs that generate
strip packings (which are all equivalent).

Note that these curves are pieces of algebraic curves. This follows from the fact that
the parametric equations are obtained by successively applying equation (1) to curva-
tures as functions of t , and taking ratios. Therefore, equations for algebraic curves can
be obtained by creating pairs of polynomial equations (e.g., x − t = 0 and 4y2t −
(1 − y − yt)2 = 0 for the equations above for {A(t), B, C(t)}) and then finding resul-
tants [5] of the pairs of polynomials considered as polynomials in t in order to elimi-
nate t .

Figure 6 shows the final picture answer, created by continuing the process described
for Figure 5. Strip packings are given by the points—i.e., ratio pairs—at the countably
infinite number of intersections of curves, and at (0, 1). Half-plane packings are given
by the other points on the curves and y-axis. Bounded and full-plane packings are
given by the remaining points, as discussed next.

Ratio pairs in the oval-shaped regions delineated by the curves give bounded pack-
ings, as do those in the partial-oval regions that stretch to x = 1. These facts can be
deduced to a certain extent by looking at various curves and their associated triples in
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Figure 6. Picture answer: Types of packings that appear from triples of circles, or two circles and a line, as
coded by their ratio pairs (x, y) ∈ [0, 1] × (0, 1]. Points on curves and points on the y-axis are the ratio pairs
that generate half-plane or strip packings. Points at intersections of curves and/or the y-axis are the ratio pairs
that generate strip packings, and all other points on the curves and y-axis generate half-plane packings. Points
in the delineated oval and partial-oval regions, which include their x = 1 and y = 1 edges, are the ratio pairs
that generate bounded packings. The remaining points, which form a fractal, are the ratio pairs that generate
full-plane packings.

Figure 4, and noticing that if a ratio pair on a curve moves slightly into a bordering
oval or partial-oval region, then the associated triple adjusts in such a way to cause the
bottom line in Figure 4 to bend and surround the packing. For example, the curves at
the lower edges of the partial ovals are associated with triples that include A and B

in Figure 4, and slightly increasing y into a partial-oval region means increasing the
size of the triple’s smallest circle, which then “pushes down” the circles between A

and B, bending the bottom line into a surrounding circle. A proof along these lines
would admittedly be cumbersome, but another piece of evidence is the fact that strip
packings almost always turn into bounded packings upon slight changes in ratio pairs,
and similarly, ratio pairs at intersections of curves in the plot almost always move into
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oval or partial oval regions when changed slightly. Another approach that provides a
proof can be found in Section 5, which presents an alternative development of the plot.

Full-plane packings are given by the mysteriously interspersed remaining points.
These are investigated in Sections 5 and 6.

In fact, the entire plot invites further investigation. Sections 5 and 6 provide a few
results, as well as a springboard for additional exploration.

5. GENERAL STRUCTURE OF THE PICTURE. Certain facts about the overall
structure of the ratio-pair plot, Figure 6, can be proved most easily using a projec-
tive geometry approach, outlined here. In particular, this section proves that the set of
points that give full-plane packings is a fractal, in the classical sense of having nonin-
tegral Hausdorff dimension.

Apollonian packings can be considered to lie in the extended complex plane, C∞ =
C ∪ ∞. Lines in C are called “circles” in C∞, so all Apollonian packings are com-
prised of circles here. The term projective trio will mean a set of three such pairwise
tangent circles. It turns out that Apollonian packings are mapped to each other by
Möbius transformations of C∞,

f (z) = az + b

cz + d
with a, b, c, d ∈ C and ad − bc �= 0,

which take circles to circles. Because a Möbius transformation can be specified by its
effect on three points, a projective trio can be mapped to any other projective trio by
sending the three points of tangency in the first to those in the second. In addition,
when applying a Möbius transformation to an Apollonian packing, the point p sent to
∞ determines the type of the resulting packing: If p lies on a circle, then the result
is a strip or half-plane packing, depending on whether p is a point of tangency of
two circles, or not, respectively. If p lies in one of the open disks, then the result is
a bounded packing. If p is in the remaining fractal set, then the result is a full-plane
packing.

This information suggests a way to answer the question, “What type of Apollonian
packing will appear?” Given three circles that are pairwise externally tangent, perhaps
a Möbius transformation could be found from a projective trio in a known Apollonian
packing to that set of three circles, and the resulting type could be determined by the
point p sent to ∞. However, this attempt fails because determining the location of
p relative to the circles in the known packing is essentially equivalent to the original
problem.

Instead, it is possible to aim for an answer in the form of a picture—which turns
out to be Figure 6—by using the idea of ratio pairs: Fix an Apollonian packing and
one of its projective trios, and plot the ratio pairs of the image of the trio under a well-
chosen set of Möbius transformations, as demonstrated here by way of an example.
One nice combination is a strip packing with the trio shown in Figure 7, along with the
set of Möbius transformations consisting of those that fix 0 and 2, and whose points p

sent to ∞ satisfy p ∈ S where S = {z ∈ C : 0 ≤ Re(z) ≤ 1, Im(z) < 0, |z| ≥ 2}. This
combination results in the bijection described by Theorem 5.2 from S to the ratio pair
space, [0, 1] × (0, 1].

Lemma 5.1. Given a triple {A, B, C} in Euclidean space, let a be the distance
between the points where A is tangent to each of B and C; similarly let b be the
distance between B’s points of tangency, and correspondingly c for C. Then the
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Figure 7. Example projective trio, Apol-
lonian packing (only the portion inside S

shown in detail), and set S for the Möbius
transformation approach to the ratio-pair
plot.

Figure 8. Illustration for Lemma 5.1. Given the distances
a, b, and c between the points of tangency of circles A, B,
and C, the curvatures kA, kB , and kC can be determined.

curvatures kA, kB , and kC of A, B, and C, respectively, are

kA = −a2 + b2 + c2

abc
, kB = a2 − b2 + c2

abc
, kC = a2 + b2 − c2

abc
.

Proof. If the given triple {A, B, C} does not contain a line, then let α, β, and γ be the
angles indicated in Figure 8. Consequently, (π − 2α) + (π − 2β) + (π − 2γ ) = π

from the triangle formed by the centers of the circles, so α + β + γ = π . Therefore in
Figure 8, θ = α. The triangle whose vertices are the points of tangency thus has

a2 = b2 + c2 − 2bc cos(α).

Meanwhile, cos(α) = (a/2)kA from the right triangle with hypotenuse 1/kA, and mak-
ing this substitution for cos(α) leads to the equation for kA in the statement of the
lemma. The equations for kB and kC are analogous.

If the triple contains a line — say C — then the equations for kA and kB follow by
almost exactly the same reasoning but using γ = π/2 and replacing the lines through
the center of C with parallel lines. The equation for kC correctly gives kC = 0.

Theorem 5.2. Let S = {z ∈ C : 0 ≤ Re(z) ≤ 1, Im(z) < 0, |z| ≥ 2}, and for each
p ∈ S let

fp(z) = (2 − p)z

z − p
,

i.e., the Möbius transformation that fixes 0 and 2, and sends p to ∞. Let (xp, yp) be
the ratio pair of the triple consisting of the images of the members of the projective
trio shown in Figure 7: line Re(z) = 0, line Re(z) = 2, and circle |z − 1| = 1. Then
the map g : S → [0, 1] × (0, 1] defined by g(p) = (xp, yp) is a bijection. Specifically,

g(p) =
(

p1

2 − p1
,

2(2 − p1)

−2p1 + |p|2
)

, (4)

where p = p1 + ip2.
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Proof. First, fix p ∈ S. To show that the ratio pair (xp, yp) is given by (4), let A, B,
and C be the images under fp of line Re(z) = 0, line Re(z) = 2, and circle |z − 1| =
1, respectively. The points of tangency, 0, 2, and ∞, of these two lines and circle
are mapped by fp to 0, 2, and 2 − p, respectively, which are therefore the points of
tangency of A, B, and C: 2 − p for A and B, 0 for A and C, and 2 for B and C.
Application of Lemma 5.1 leads to the circles’ curvatures,

kA = 2p1

|p(2 − p)| , kB = 2(2 − p1)

|p(2 − p)| , kC = −2p1 + |p|2
|p(2 − p)| .

Hence, equation (4) gives the ratio pair (xp, yp).
Second, the map given by equation (4) is easily seen to be a bijection from S to

[0, 1] × (0, 1]: The parts of S’s boundary along Re(z) = 0, Re(z) = 1, and |z| = 2
map, respectively, to the x = 0, x = 1, and y = 1 parts of the boundary of [0, 1] ×
(0, 1]. In addition, on the domain, the first expression of the pair in equation (4) is
strictly monotonic in p1, while the second expression is strictly monotonic in p2 with
a limit of 0.

As a practical matter, actually creating a plot using this approach requires more
background machinery and computation than does the approach of Sections 3 and 4,
but the map given by equation (4) provides a visual relationship between the set S in
the Apollonian packing (Figure 7) and the resulting plot of ratio pairs (Figure 6). Espe-
cially relevant is that the regions in Figure 6 delineated by the ovals and partial ovals
are the images of the full and partial open disks in S in Figure 7, proving the statement
in Section 4 that those regions in Figure 6 give bounded packings. In addition, a deeper
excursion into the equations can give another proof that the curves are algebraic, this
time looking at whole ovals.

Proofs about fractal dimension also become accessible. As background: The term
Apollonian gasket is often used in the study of dimension to mean the complement
of the set of open disks of an Apollonian packing confined to the curvilinear triangle
bounded by three tangent circles. Apollonian gaskets are fractals in the classic sense
of having nonintegral Hausdorff dimension. Every Apollonian gasket has the same
Hausdorff dimension, proved in the 1960s to be nonintegral [13, 21], and eventually
shown after some progressively precise bounds to have value ≈ 1.306 [20, 26]. Note
that this value is smaller than the Sierpiński gasket’s Hausdorff dimension, ln 3/ ln 2 ≈
1.585. Another relevant fact is that for a set G ⊆ Rn, if f : G → Rm is a bijection
such that both f and f −1 satisfy Lipschitz conditions, then the Hausdorff dimension
of f (G) equals that of G [8].

Theorem 5.3. In the ratio-pair plot of Figure 6, let H be the complement of the set
consisting of the oval-shaped and partial-oval regions, which include their x = 1 and
y = 1 boundary segments except for endpoints at parametric curves. Then H has
Hausdorff dimension equal to that of an Apollonian gasket, i.e., approximately 1.306.

Proof. Consider the Apollonian packing in Figure 7 to be in R2, in the obvious way.
Let R ⊆ R2 be analogous to S; i.e., R = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, y < 0, x2 + y2 ≥
4}. Let h : R → [0, 1] × (0, 1] be analogous to g as given by equation (4); i.e., the
equation for h(x, y) is given by (4) with p1 and |p|2 replaced by x and x2 + y2, respec-
tively. From Theorem 5.2 we can deduce that h is a bijection.

As seen in Figure 7, the set R contains a sequence of the packing’s Apollonian
gaskets Gn, n = 1, 2, 3, . . . , such that for each n, Gn spans from x = 0 to x = 1,
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and Gn ⊆ Rn, where Rn = {(x, y) : 0 ≤ x ≤ 1, −(2n + 2) ≤ y ≤ −2n}. Note that
H = ⋃

n∈Z+ h(Gn). Write h = (hx, hy). For fixed n ∈ Z+, it follows from the equation
for h that the function h restricted to Gn satisfies a Lipschitz condition, and its inverse
satisfies a Lipschitz condition, because there exist intervals [x1, x2] and [y1, y2] not
containing 0 such that at every point in Rn, ∂hx/∂x ∈ [x1, x2] and ∂hy/∂y ∈ [y1, y2]
while ∂hy/∂x is bounded and ∂hx/∂y = 0.

Since H is a countable union of these images h(Gn) of Apollonian gaskets, the
dimension of H equals that of an Apollonian gasket.

Corollary 5.4. The set F of ratio pairs that generate full-plane packings has Haus-
dorff dimension equal to that of an Apollonian gasket, i.e., approximately 1.306.

Proof. Let H be as in Theorem 5.3. The set difference between H and F has Hausdorff
dimension 1 because it is comprised of a countable collection of 1-dimensional pieces
of algebraic curves. Therefore, since the Hausdorff dimension of H is greater than 1,
it is equal to that of F .

An interesting consequence is a hierarchy among the four types of packings: Strip
packings, half-plane packings, full-plane packings, and bounded packings have sets of
ratio pairs with respective Hausdorff dimensions 0, 1, ≈ 1.306, and 2.

6. BEGINNING OF THE EXPLORATION. The picture answer of Figure 6 sug-
gests a number of questions. What characterizes various portions of the plot? What is
the pattern relating the locations of curves in the plot to the positions of their paramet-
ric triples in the Apollonian packing as displayed in Figure 4? More generally, how do
locations in [0, 1] × (0, 1] relate to positions in a packing?

Questions also arise about specific Apollonian packings. Given a packing, what
does its set—i.e., its equivalence class—of ratio pairs of triples look like in the picture?
Is there a pattern within and/or between equivalence classes?

This section forms just the beginning of an exploration, and introduces additional
open questions as well.

The strip packing. We already know that there is only one strip packing up to similar-
ity. Therefore, there is only one equivalence class, which consists of the intersections
between curves and/or the y-axis.

This fact can be viewed in relation to the known Propositions 2.2 and 2.3 about the
strip packing and rational points. Proposition 2.2 tells us that all intersections occur
at rational points. Proposition 2.3 states a further restriction for curves’ intersections
with the y-axis, namely that they occur at squares of rational points. This proposition
has an immediate interpretation if the picture is re-done in terms of square roots of the
coordinates, as in Figure 9: The curves intersect the vertical axis at exactly the rational
points.

In fact, the appearance of these rational intersections with the vertical axis could be
investigated in terms of Ford circles [9], i.e., those tangent to the line in the packing,
and Farey fractions, for which an entertaining exposition can be found in [27].

Half-plane packings. A first observation about half-plane packings is that each oval
in Figure 6 is comprised of six curves from a sextuplet of parametric triples, as shown
in Figure 10. The reason that these sets of curves make loops is explained here; the
resulting shapes being “ovals” is simply an observation from Figure 6. In the top half
of Figure 10, triples that are mirror images across the vertical dashed line have the
same ratio pair, so their curves begin (at t = 0) at the same point. Triples that are

624 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 128



Figure 9. Same as Figure 5 (Stage 4) and Figure 6 (Complete) but with square root scaling so that intersections
with the vertical axis are at exactly the rational points.

rough mirror images over the diagonal dashed curve have the same ratio pair at t = 1,
so their curves end (at t = 1) at the same point. Therefore, traveling along successive
parametric curves of a sextuplet creates a closed curve in the ratio-pair plane.

Not every parametric triple is a member of a sextuplet, as can be seen by looking at
triples in Figure 10. Each nonsextuplet triple includes at least two of A(t), B, and C(t),
and is symmetric (roughly) over a dashed line or curve. In the ratio-pair plot, these
triples produce the long curves that begin at x = 0 and x = 1, such as those labeled
in Figure 5, Stage 2, because the ratio of curvatures between any two of A(0), B, and
C(0) is 0 or 1.

Figure 10. In the notation of Figure 4, the symmetries that cause parametric triples’ ratio pairs to match when
t = 0 and t = 1. Except for triples containing at least two of A(t), B, and C(t), each parametric triple belongs
to a sextuplet determined by reflections over the dashed curves in alternation.
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These long curves delineate a sequence of curvitriangular full-width portions of
the plot in Figure 6, and a natural question arises: For each such triangular region,
what characterizes the parametric triples that produce the curves inside that region?
The answer is that the top triangular region corresponds to triples in which the two
smallest circles are from consecutive generations of the development of the Apol-
lonian packing in Figure 4 beginning with 0th generation {A(t), B, C(t)}, and the
nth region from the top corresponds to triples in which the two smallest circles are
from generations that are n apart. This answer could be proved formally using rea-
soning about connections between curves. Intuitively, the answer makes sense because
larger differences between generations mean smaller ratios and thus smaller values
of y.

More specifically, we can ask: Which curves in Figure 6 correspond to which para-
metric triples in Figures 4 or 10? Except for a few special cases, this question is left
open here. Particularly interesting would be a thorough guide to the plot. One key is
that curves connect not just at mutual t = 0 or t = 1 points, but also at other points.
For example, a “t = 1” triple in the bottom half of Figure 10 has the same ratio pair as
two triples between B, C, and D in the top half. Thus, two new curves begin (t = 0) at
the t = 1 end of the original curve. In addition, curves intersect at values of t besides
0 and 1.

Regarding the equivalence class for a given half-plane packing: Since each half-
plane packing is represented in Figure 4 for some value of t ∈ (0, 1), say t0, we know
that every one of Theorem 3.5’s parametric triples will generate the given half-plane
packing when t = t0. Because each oval in the plot is created by a sextuplet of these
parametric triples, an oval will get exactly six points of the equivalence class from its
six parametric triples with t = t0. Meanwhile, a given half-plane packing has many
tents, and each tent is equivalent to {A(t), B, C(t)} for some t in Figure 4. Thus there
are many values of t that can be used to produce the same packing. In the end, each
oval includes infinitely many sets of six points of the equivalence class.

Bounded packings. Two observations are made here about bounded packings. The
first is that the partial-oval regions correspond to triples with at least two circles tan-
gent to the bounding circle. This fact is deduced from the development in Section 4:
The lower edges of the partial ovals stem from Figure 4’s parametric triples that have
largest two circles A(t) and B, as that pair produces ratio x spanning from 0 to 1.
As mentioned in Section 4, slightly increasing y from a specific such triple, say with
t = t0, creates a bounded packing because the bottom line becomes the surrounding
circle. Relevant here is that A(t0) and B become tangent to the bounding circle. An
alternative explanation is provided by the viewpoint of Section 5: The partial-oval
regions correspond to parts of disks in Figure 7 that have their boundary circles tan-
gent to both lines. When a point p in such a disk is sent to ∞, its surrounding circle
becomes the packing’s bounding circle, which is then tangent to the images of the two
lines (these images being members of the triple).

The second observation is about equivalence classes, particularly within the topmost
partial-oval region. Application of the reasoning above shows that this region corre-
sponds to triples with all three circles tangent to the bounding circle. Each bounded
packing has a countably infinite number of triples tangent to the bounding circle, with
a countably infinite number of ratio pairs. Therefore, within the topmost partial-oval
region, each equivalence class is countably infinite. Conveniently, nevertheless, there
is a canonical set of representatives for the equivalence classes: the ratio pairs of the
triples of largest three circles (besides the bounding circle) in a packing. This canonical
set is shown in Figure 11.
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Figure 11. Examples regarding equivalence classes. The closed set outlined at the top is a canonical set of rep-
resentatives for bounded packings. The set of dots shows 1,093 of the infinitely many ratio pairs that generate
the full-plane packing in Figure 2.

In fact, there are many canonical sets of representatives. One collection is based
upon the fact that it is possible to specify the positions of all triples in relation to the
largest three circles.

Full-plane packings. The ratio pairs for full-plane packings are hiding in the fractal
between the curves. How do we “find” these points? The answer is to use a classic
method: Construct sequences whose limits are guaranteed to not be anywhere else.

We can construct these sequences from endpoints of successive parametric curves,
using the stages as illustrated in Figure 5. More precisely, choose a curve and travel to
its t = 1 endpoint, then choose one of the adjoining next-stage curves and travel to its
t = 1 endpoint, and so on. The limit of the sequence will be bounded away from every
curve as long as the following holds: For every step in the sequence, there exists a
later step in which the chosen next-stage curve begins in the direction opposite to that
traveled to the end of the previous curve. The limit is then a ratio pair that generates a
full-plane packing, because the point is not on a curve, and is not in an open set disjoint
from all of the curves.

Figure 12 shows an example in which the direction changes at every endpoint. In
this example, it turns out that the triples are equivalent to those formed from consecu-
tive circles in a spiral as shown at right in Figure 12. The limit of this sequence of ratio
pairs is (φ − √

φ, φ − √
φ), which corresponds to the self-similar full-plane packing

discussed in Section 2 and shown in Figure 2.
Another way to find ratio pairs that generate full-plane packings is to use a related

idea with the alternative approach of Section 5. In the set S of Figure 7, travel along
a sequence of arcs through successive stages of smaller and smaller circles, changing
directions occasionally. Applying the map in equation (4) to the limit will produce a
ratio pair that generates a full-plane packing.
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Figure 12. Left: A sequence of ratio pairs whose limit generates a full-plane packing. The sequence is given
by the endpoints of the solid parametric curves, while the dotted curves are shown for reference in relation to
Figure 6. Right: The clockwise spiral of circles starting with B, C, D, E, based on Figure 4 using t = 1, whose
consecutive-circle triples are those that produce the solid parametric curves at left. The ratio pairs of the first
two triples are labeled at left.

What do equivalence classes look like? Figure 11 provides an example. The points
in Figure 11 were calculated from triples in the full-plane packing, rather than by
taking limits of sequences; open for investigation is the question of which sequences
have limits that give the same full-plane packing.

More questions. The reader can probably imagine many more questions and direc-
tions for exploration than would fit here. More questions could be asked about equiv-
alence classes, for example about canonical sets of representatives, as well as about
patterns within and/or between equivalence classes. Additional investigation is pos-
sible on the topic of algebraic curves. More features of the plot could be explored, for
example from the viewpoints of geometry or analysis.

While the approach of Sections 3 and 4 provides the most direct relationship
between specific trios and types of packings, the alternative approach of Section 5
inspires its own host of questions. An inquiry could begin with various sets and pro-
jective trios, as in Figure 7, for which a well-chosen set of Möbius transformations
leads to a bijective map to the ratio-pair space [0, 1] × (0, 1]. An interesting next step
might be a graphical display to show the manner in which an entire packing repeatedly
covers the ratio-pair space with such a map.

Another enticing idea, with either approach, is to use animations to illustrate results.
How do ratio pairs, or sets of ratio pairs, move through the plot as the triples and
packings deform in systematic ways? Or the converse: How does a packing change
as a triple’s ratio pair follows a path of interest? These questions are just a tip of the
iceberg.
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