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TT
here are probably not many formulas in mathematics
in the discovery of which a princess was instrumental
and that are described in a poem written by a Nobel

laureate (in Chemistry!). Yet such is the case for what is
now known as Descartes’s circle formula.

Let C1, C2, and C3 be mutually tangent circles with radii
r1, r2, and r3.

Let us assume that the radius of a fourth circle tangent to
the other three, the red circle in Figure 1, is r4.

1 Descartes’s
circle theorem asserts the following:

THEOREM. The radii r1, r2, r3, r4 of four mutually tangent

circles satisfy
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The problem of finding the radius of the fourth circle is a
special case of a problem of Apollonius [2]: given three
circles, construct the circles tangent to all three circles.2

We will give a straightforward proof of Descartes’s the-
orem, using only elementary algebra and Heron’s formula
for the area of a triangle.

A Short History of Descartes’s Circle Theorem
Descartes’s circle theorem was first described by Descartes
in 1643 in his correspondence with Princess Elisabeth of

Bohemia, one of his pupils [5]. In a letter to her, Descartes
posed the following problem [4]:

which is Apollonius’s problem. Descartes soon realized that
this might be too difficult, and he reduced the problem to
the case that the three given circles are mutually tangent.
He also gave the following solution [4]:

Here e, f, and g are the given radii, and x is the radius to be
found.
Exercise for the reader: Show that this solution is equivalent
to (1).

The formula was rediscovered and proved by Jakob
Steiner in 1826, and again by Philip Beecroft in 1842. In
1936, Frederick Soddy, who received the Nobel Prize in
chemistry in 1921, rediscovered the result, and wrote a
poem about it [6] (reprinted here by permission):

1All the figures were produced by the author.
2This is a problem at which a countess tried her hand, Countess Skorzewska [1, p. 308]. Lambert describes her in his correspondence as a learned Polish lady and a

great lover (‘‘Liebhaber’’) of the mathematical sciences.
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More recently, Lagarias et al. [8] proved that a relation
very similar to (1) relates the centers of the tangent circles
in the complex plane.

The proof of (1) by Steiner [9] uses a result about Pappus
chains and a generalization of Viviani’s theorem to general
triangles. Beecroft’s proof makes use of four other mutually
tangent circles through the points where the four circles meet.
It was later simplified by Coxeter [2]. Coxeter himself gave a
new proof, based on inversion with respect to a circle [3].
Pedoe [10] lists some other proofs, one based on a symmetry
argument, another using Grassmann calculus. None of these
proofs is particularly straightforward. It is not known what
path Descartes and Elisabeth followed to derive their result.

The Proof (That Descartes Missed?)
The proof given here is based on Heron’s formula [11] for
the area of a triangle with sides a, b, and c:

area ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oðo�aÞðo�bÞðo�cÞ

p
; where o¼ aþbþc

2
:

This formula was known to Descartes and Princess Elisa-
beth, and they both probably used it in trying to solve the
problem of the touching circles.

If we connect the centers of these four circles (see Fig-
ure 2), four triangles are formed, the area of the largest
triangle being the sum of the areas of the other three. We
can write this out using Heron’s formula:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1r2r3ðr1 þ r2 þ r3Þ
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1r2r4ðr1 þ r2 þ r4Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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r2r3r4ðr2 þ r3 þ r4Þ

p
:

ð2Þ

Note that there is also a circle touching the three given
circles externally. If we assume that the radius of this circle
is taken to be a negative number, then in the configuration
of Figure 2, the same equation (2) is satisfied, as can be
seen in the right-hand figure.

Solving equation (2) in the traditional way by repeatedly
squaring leads to enormous calculations.3 However, by
carefully simplifying at each step, it is possible to get the
result in one page.

In the sequel we will use the following notation:

s ¼ r1 þ r2 þ r3 þ r4; p ¼ r1r2r3r4;

t ¼ p

s
; u ¼ 1

s
:

Furthermore, let

Figure 1. Four mutually tangent circles for Descartes’s circle

theorem.

Th e K i s s P r e c i s e
For pairs of lips to kiss maybe
Involves no trigonometry.
’Tis not so when four circles kiss
Each one the other three.
To bring this off the four must be
As three in one or one in three.
If one in three, beyond a doubt
Each gets three kisses from without.
If three in one, then is that one
Thrice kissed internally.

Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of
The distance from the center.
Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.

Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.

To spy out spherical affairs
An oscular surveyor
Might find the task laborious,
The sphere is much the gayer,
And now besides the pair of pairs
A fifth sphere in the kissing shares.
Yet, signs and zero as before,
For each to kiss the other four
The square of the sum of all five bends
Is thrice the sum of their squares.

F. SODDY

After the publication of the poem another verse was added to it by Thorold Gosset [7], the
generalization of the result to n dimensions.

3As Descartes writes in his letter to Elisabeth dated November 29, 1643 [5], ‘‘But this route seems to me to lead to so many superfluous multiplications that I would not

want to undertake to solve them in three months.’’
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Using this notation, we can rewrite (2) asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1r2r3s � p

p
¼
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r1r2r4s � p
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:

We now divide by
ffiffi
s

p
and rearrange:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1r2r3 � t
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1r2r4 � t

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1r3r4 � t
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p
:

Squaring both sides and rearranging leads to

r1r2r3 þ r1r2r4 � r1r3r4 � r2r3r4

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1r2r3 � t
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We divide this result by p:
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Again we square both sides:
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which after rearranging becomes
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Note that since
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we can rewrite this equation as
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Squaring both sides (again), we find for the left-hand side,

2b�a2
� �2þ8 2b�a2

� �
au�16 2b�a2

� �
u2þ16a2u2

�64au3þ64u4:

The right-hand side is given by
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Note that the first two terms cancel. The terms contain-
ing u2, u3, and u4 are the same on both the left- and
right-hand sides. Hence after rearranging, we get

ð2b�a2Þ2þ8ð2b�a2Þau¼0;

or equivalently,

2b�a2
� �

� 2b�a2þ8au
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¼0:

The second factor cannot be zero, since in that case, we
would have 2b�a2 ¼�8au, which would result in a neg-
ative left-hand side in (3). Hence we have 2b¼a2, or
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Note that given r1, r2, and r3, this is a quadratic equation in
r4 with two solutions: the radii of the two tangent circles in
Figure 2, called the inner and outer Soddy circles.

Figure 2. Three mutually touching circles C1, C2, and C3 and the two solutions of Apollonius’s problem.
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A Remark on Circle Packings
The problem of the ‘‘kissing circles’’ and Descartes’s circle
theorem are as current today as they were some four
hundred years ago. To give but one example, Descartes’s
formula plays an important role in the theory of circle
packings in the plane. A circle packing is an arrangement of
circles that all touch one another. A special case is that of
Apollonian circle packings, which are constructed by
starting with three mutually touching circles and adding the
two circles tangent to the first three. Taking one of those
two and combining it with two of the original circles leads
to a similar situation in which we can find two new circles
tangent to them. And we can continue in the same way.
The first steps in such a process can be seen in Figure 3.

The numbers in the circles denote their curvatures (1/
radius). It is a nice consequence of the form of Descartes’s
circle formula that if we start with four circles with integral
curvature, one of them being negative, all the other cur-
vatures will be integers too. Such a packing is called an
integral Apollonian circle packing [12].
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Figure 3. The largest circles in an integral Apollonian circle

packing.
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