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Imagine rolling a wheel with a point marked on it. Visualize the marked point
as continuously leaving a trace of its location. The shape of the curve that is drawn
depends upon (1) the shape of the wheel, (2) the placement of the tracing point on the
wheel, and (3) the curvature of the path traversed by the wheel. For example, a point
placed on the perimeter of a circular wheel when rolled along a straight line path traces
the well known cycloid, as shown in Figure 1.

Figure 1 The marked point on the rolling wheel traces out a cycloid.

While it is not known when, in antiquity, the cycloid was first studied, Christiaan
Huygens proved in 1673 that the cycloid solved the famous tautochrone problem. New-
ton, Leibnitz, and others demonstrated in 1696 that the cycloid also solved the equally
famous brachistochrone problem. Much of this history is recounted in the excellent
article by Martin [2].

Instead of rolling circular wheels along straight lines or circular paths, an interesting
variation arises from “rolling” regular n-sided polygons along straight lines. Placing a
tracing point at the midpoint of one polygonal side results in a traced path composed
of joined circular arcs that form the arches of a curve that we shall call a polycycloid,
as shown in Figure 2.

Figure 2 Examples of polycycloids.

In a noteworthy 1992 article by Leon Hall and Stan Wagon in this Magazine,
the authors investigated the shape required of a road to allow a polygonal wheel to
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roll smoothly [1]. Subsequently, in a widely read 1999 Math Horizons piece, Wagon
showed that a bicycle with square wheels would roll smoothly along a road constructed
as a sequence of inverted catenary curves [3].

Whereas the focus of these prior articles was on the required road shapes for a
wheel to roll smoothly, this present piece investigates not the road, but (1) the length
of traced polycycloidal paths, and (2) the area bounded by a polycycloid above and by
the x-axis below. The analysis involves limit techniques central to the calculus and it
inspires a number of related challenge problems for interested students, as presented
at the end of this article.

Arc Length

For a cycloid created by rolling a circle of radius r = 1, with tracing point located on
the perimeter of the circle, the horizontal displacement D of the tracing point defined
by one revolution of the circle equals the circles circumference. Specifically, D =
2π(r) = 2π(1) = 2π

Using the parametric equations for a cycloid, x = r(θ − sin θ) and y = r(1 −
cos θ), the following integral shows that the length L of the arc generated by rolling
the circle through one revolution is 8r:

L =
∫ 2π

0

√(
dx

dθ

)2

+
(
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)2
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∫ 2π

0
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0
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2
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When r = 1, the arc length L for one arch of the cycloid formed by rolling a circle
is L = 8.

In order to compute the length Ln of one arch of a polycycloid, we need the radius
of each of the component circular arcs. For convenience, place a regular n-gon and a
circumscribing circle of radius r so that the circle and n-gon are both centered at the
origin (0, 0), as shown in Figure 3.

The rotation angle θ defined by rolling the n-gon about a vertex as the n-gon rolls
from one side onto its adjacent side is θ = 2π

n

The radius r of the circumscribing circle must be determined from the size of the n-
gon with side length sn, prescribed by the requirement that the perimeter of the polygon
must equal the circumference of a unit circle if the resulting polycycloids are to start
and end at the same locations.

The distance formula provides expressions for lengths rn and sn identified in Fig-
ure 3.
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Figure 3 A regular n-gon with a circumscribed circle, centered at the origin.

sn =
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Letting θ = 2π/n, the relationship between sn and r simplifies to sn = 2r sin(π/n),
and therefore, r = sn/(2 sin(π/n)).

Since sn = D/n, it follows that r = D/(2n sin(π/n)), and the total polycycloid arc
length Ln is given by
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Since regular n-gons become increasingly circular as n approaches infinity, the
length Ln of one arch of a polycycloid must converge to L = 8, which is the length of
one arch of a cycloid generated by rolling a circle of radius r = 1. See Figure 4.

Figure 4 Polycycloids with n = 8 and n = 12.

Using the Ln formula, values of Ln for regular n-gon polycycloids can be seen to
converge to L = 8 as n increases, just as expected. This is shown in Table 1.

TABLE 1: Arc length Ln of one arch of a polycycloid for different values of n.

n sides LN

3 8.185303
4 7.984678
5 7.952617
6 7.951943
7 7.957557
8 7.963763

12 7.980583
30 7.996458
100 7.999672

1000 7.999997

Despite the apparent pattern revealed in Table 1, many mathematics students would
find it challenging to prove that limn→∞ Ln = 8 even with the powerful methods of
calculus at their disposal.

Area

As the number of sides n of a polygon increases, the area An under one arch of a
polycycloid traced by the rolling n-sided regular polygon approaches the area A under
a cycloid traced by rolling a circle. In order to compute the area A under one arch of a
cycloid traced by rolling a circle of radius r = 1, we again use the parametric equations
of the cycloid, x = r(θ − sin θ) and y = r(1 − cos θ) with dx = r(1 − cos θ) dθ , to
write an integral that computes the required area:

A =
∫ θ=2π

θ=0
y dx =

∫ 2π

0
r2(1 − cos θ)2 dθ = 3πr2
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For a circle of radius r = 1, the area A under the cycloid reduces to A = 3π(1)2 =
3π ≈ 9.424778.

Now we compute the area An under a polycycloid generated by a regular n-gon. In
contrast to the cycloid formed by rolling a circle, a pattern of successive circular arcs
join to form the polycycloidal curve generated by the n-gon. In Figure 5, each arc is
translated to the n-gon’s original starting position.

Figure 5 Endpoint coordinates associated with successive arcs of a polycycloid gener-
ated by an n-gon.

We find the successive integral limits by rotating the n-gon through counterclock-
wise rotations of 2π/n radians starting with (x0, y0) = (π/n, 0). For 1 ≤ k ≤ n, we
define a point T (xk, yk) according to the recursive formulas:

xk+1 = xk cos
2π

n
− yk sin

2π

n
and yk+1 = xk sin

2π

n
+ yk cos

2π

n
.

We then apply a horizontal translation of 2π/n to the point T (xk, yk) as shown in
Figure 5.

The area An under one complete cycle of a polycycloid can be determined by sum-
ming the areas bounded above by each of the circular arcs (that together form the
polycycloid) and below by the horizontal axis.

An = 2

(∫ x0
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)
,

where the integral limits represent the x-coordinates of the aforementioned points.
(See Figure 5).

Again, as the number of sides of a regular n-gon increases, the shape of the n-gon
converges to that of a circle. Accordingly, the area An generated by rolling a regular
polygon must approach that of the cycloid traced by rolling a circle.

Using the area formula for An with successively larger values of n, the polycloid
area An increases as expected to A = 9.424778, the area defined by the cycloid
(obtained by rolling a circle). The areas for a few values of n are shown in Table 2.
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TABLE 2: The area An for a polycycloid generated by a polygon with n sides.

n Sides An

3 7.641309
4 8.280178
8 9.1103217
12 9.2828896

Circle 9.424778

Possibilities for further investigation

Students wishing to further explore aspects of polycycloids might choose to attempt
some of the following problems:

1. As n → ∞, the number of cusps that occur on a polycycloid increases (that is, the
number of points where the path is non-differentiable increases) suggesting that the
final curve is everywhere non-differentiable. On the other hand, as n → ∞, polycy-
cloids converge to the smooth path of the everywhere differentiable cycloid. Does
this suggest that, as n → ∞, the polycycloids yield a curve that is both everywhere
differentiable and simultaneously everywhere non-differentiable?

2. Investigate curves produced by rolling regular n-gons around circular path. For
comparison, curves formed by rolling a circle around the outside of another circle
are called epicycloids. If a circle is rolled around the inside of a containing circle,
then the resulting curve is called a hypocycloid.

3. Evaluate limn→∞ Ln and limn→∞ An.
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Summary. Historical problems related to cycloids form the background for an investigation of paths traced
by rolling regular polygons. Using trigonometry, geometry, and calculus, the lengths of and areas under the
generated paths are shown to converge to values associated with the classical cycloid as the number of polygonal
sides increases.
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