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Projectile Motion: Resistance Is Fertile

William W. Hackborn

1. INTRODUCTION. The nature of projectile motion, occupying as it does an im-
portant place in the work of Galileo and Newton, lies near the heart of the scientific
revolution. The topic itself and its application to ballistics have attracted the interest of
many mathematicians, but not all of them: G. H. Hardy [9, p. 140] wrote that ballistics
is “repulsively ugly and intolerably dull; even Littlewood could not make ballistics
respectable.” Hardy’s views notwithstanding, one goal of this work is to show that
the motion of a projectile subject to air resistance is a fertile source of elegant and
accessible mathematics.

This paper deals with the motion of a projectile in a uniform, downward gravita-
tional field and resisted by a drag force due to the air through which it moves. The
drag force is assumed to act in a direction opposite to that of the projectile’s velocity
and to depend only on its magnitude. Coriolis forces and Earth’s curvature are ignored.
Hence, by Newton’s second law,

dx

dt
= u,

dy

dt
= v,

du

dt
= − f (s)

s
u,

dv

dt
= −g − f (s)

s
v, (1)

where (x, y) is the position vector of the projectile, (u, v) is its velocity vector, s =√
u2 + v2 is its speed, f (s) is the magnitude of the drag force on it per unit mass, and

g is the acceleration of gravity. The initial conditions imposed on (1) are

x = 0, y = 0, u = a = sI cos φ, v = b = sI sin φ, at t = 0, (2)

where a and b are the initial components of velocity, sI = √
a2 + b2 is the initial speed,

φ is the launch angle, and a > 0 is assumed to simplify notation.
The case of air resistance varying as the speed of the projectile, i.e., f (s) = ks with

k a positive constant, has been widely studied, e.g., [3, 5, 17]. System (1) is linear in
this case; solving for x and y and eliminating t from the result produces

y =
(

b + g

k

) x

a
+ g

k2
log

(
1 − kx

a

)
. (3)

An encounter with (3) in a video [2] on the scientific revolution led me to become
curious about its origins and accuracy. I eventually learned that Newton [14, pp. 636–
640], although he did not state a Cartesian equation like (3), provided a geometric
construction for the solution curve described by (3). Newton was dissatisfied, how-
ever, with this solution, remarking that the hypothesis that resistance is proportional
to speed “belongs more to mathematics than to nature,” and he went on to make a
plausible physical argument that resistance varies as the square of the speed in “medi-
ums wholly lacking in rigidity”: a body moving at a greater speed through such a
medium produces proportionally greater velocities in proportionally more particles of
the medium per unit time, and so the change per unit time in the total momentum of the
medium, and hence its resisting force (by Newton’s second and third laws of motion),
is greater in proportion to the square of the body’s speed [14, p. 641]. The Principia
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describes extensive experiments to measure fluid drag, including some in which in-
flated hogs’ bladders and glass balls filled with air or mercury were dropped from the
top of St. Paul’s Cathedral in London [14, pp. 756–759]; Newton found the results of
these experiments to accord well with resistance varying as the speed squared. Mod-
ern research on fluid drag confirms this for bodies moving at subsonic speeds in air
(see [7, 12, 15], for example).

Projectile motion under quadratic drag was at the center of a fascinating episode
in the calculus priority dispute: Newton failed to construct the exact solution for a
projectile in a fluid whose resistance is proportional to the square of the projectile’s
speed; in 1718, this failure and the fallout from an error found by Johann Bernoulli
in Newton’s approximate analysis of this problem in the first edition of The Principia
prompted Oxford professor John Keill to challenge Bernoulli to solve it; Bernoulli then
found an implicit solution involving nonelementary quadratures for projectile motion
subject to an even more general resistance law (see [14, pp. 168–171] and [8, pp. 152–
156]). Bernoulli’s solution became the foundation of many approximations over the
next two centuries, including Euler’s approximation for the case of quadratic drag,
which was still used for trench mortars and other subsonic guns as recently as World
War II [13, p. 258].

This paper emerged from a desire to find a formula analogous to (3) when drag
varies as the square of the projectile’s speed. Although I was unable to find an elemen-
tary expression for the trajectory of the projectile in this realistic case, I have rederived
an elementary first integral of (1), rediscovered an elementary expression that approx-
imates the trajectory quite well for launch angles up to moderate size, developed a
proof that this approximate trajectory lies between the exact trajectory and Galileo’s
parabolic trajectory, and investigated other elementary expressions for approximate
trajectories. These results appear below.

2. RESISTANCE VARIES AS SQUARE OF THE SPEED. The motion of a pro-
jectile under quadratic drag is governed by (1) with f (s) = cs2, c a positive constant.
The last two equations in (1) determine solutions in the (u, v) plane, and (u, v) =
(0, −sT ) with sT = √

g/c is the only fixed point solution, representing a vertical tra-
jectory downward at terminal speed sT . A local analysis near this fixed point and the
Hartman-Grobman Theorem [6, p. 13] reveal that

u ∼ C1 e−√
cg t , v ∼ C2 e−2

√
cg t − sT , as t → ∞, (4)

where C1 and C2 are constants. Hence, this fixed point is asymptotically stable and,
since there are no periodic solutions by Bendixson’s criterion [6, p. 44], a global at-
tractor in the (u, v) plane. Letting w = v/u, the last two equations in (1) give

dw

dt
= −g

u
,

du

dw
= f (s)

gs
u2 = c

g
u3

√
1 + w2, w = v

u
. (5)

Solving the second equation in (5) and employing (2) yields the first integral

g

cu2
+ h(w) = g

ca2
+ h

(
b

a

)
, h(w) = w

√
1 + w2 + log(w +

√
1 + w2).

(6)

The result in (6), generalized to f (s) = csn for arbitrary n, was derived in a different
way by Johann Bernoulli, who used this result to express t , x , and y as indefinite
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integrals involving w as a parameter (see [16, pp. 95–96]). Now, (5) and (6) imply

dw

dt
= −√

cg p(w), p(w) = g

ca2
+ h

(
b

a

)
− h(w). (7)

Let we(t) be the exact solution of (7) satisfying w = b/a at t = 0. I was unable to find
an elementary expression for we(t). However, h(w) = 2w + O(w3) as w → 0, and
replacing h(w) by 2w in (7) yields the approximate equation

dw

dt
= −√

cg q(w), q(w) = g

ca2
+ 2b

a
− 2w. (8)

Thus, letting ws(t) be the solution of (8) having w = b/a at t = 0,

w ≈ ws(t) = b/a − gt/a − cgt2/2. (9)

Note that w = v/u = tan θ , where θ is the inclination angle of the velocity vector. It is
expected that we(t) ≈ ws(t) on trajectories truncated at a finite value of t for which θ ,
and thus w, is uniformly small. Since (6) and (7) imply u = [p(w)]−1/2 ≈ [q(w)]−1/2

for small θ , and v = uw, it follows from (1), (8), and (9) that

x ≈ xs(t) = c−1 log(act + 1), (10)

y ≈ ys(t) = (b + g/2ac)(ac)−1 log(act + 1) − gt2/4 − gt/2ac. (11)

Finally, using (10) to eliminate t from (11) produces

y ≈ Ys(x) =
(

b + g

2ac

) x

a
+ g(1 − e2cx)

4a2c2
, (12)

which is analagous, for quadratic drag and small inclinations, to (3) for linear drag.
Formula (12) also appears in [10, pp. 294–297] and [15] but is derived differently.
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Figure 1. Trajectories for linear drag (L), exact quadratic drag (E), the small inclination approximation (S),
and no drag, Galileo’s parabola (G), for terminal speed 40 m/s and initial speed 20 m/s at launch angle 45◦.

Let Ye(x) be the exact solution for y in terms of x . Figure 1 shows trajectories
given by (3), Ye(x) computed (by MAPLE) using a Runge-Kutta method, Ys(x), and
Galileo’s parabola Yg(x) = bx/a − gx2/2a2. These trajectories were calculated using
g = 9.8 m/s2, c = g/s2

T , and (since sT = g/k for linear drag) k = g/sT in (3), with
sT = 40 m/s (89.48 miles/hour, roughly the terminal speed of a baseball [12] and the
speed of a typical pitch in the major leagues). Evidently, the trajectory for linear drag
is very different from that for quadratic drag in this figure, and Ys(x) is quite close to
Ye(x) though the launch angle (45◦) is not small.
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Figure 1 suggests a relationship: Ye(x) < Ys(x) < Yg(x) for x > 0. Actually, this
cannot quite be true since Ye(x), unlike Ys(x) and Yg(x), has a vertical asymptote.
Why? Note that (4) implies that the total change,

∫ ∞
0 u dt , in x over an entire trajectory

is finite, while the total change,
∫ ∞

0 v dt , in y is negatively infinite. Hence, Ye(x) has a
vertical asymptote at, say, x = x∞. See [16, p. 99] for another proof of this asymptote’s
existence. Theorems 1 and 2 below address relationships between the exact solution
for quadratic drag, the small inclination approximation, and Galileo’s solution. These
theorems seem to originate with the author, unlike the main results above which were
obtained by the author and later found to be published elsewhere. Theorems 1 and 2
continue something of a MONTHLY theory series (see [1, 3, 4]) on motion subject to
air resistance. Care has been taken to make their proofs as elementary as possibile.
Both proofs use a corollary to the Mean Value Theorem (CMVT) which implies that
a differentiable function exceeds another on an interval when its derivative is greater
(less) than that of the other on the interior of the interval and the functions are equal at
the interval’s left (right) endpoint.

Theorem 1. (a) Ye(x) < Ys(x) for 0 < x < x∞. (b) Ys(x) < Yg(x) for x > 0.

Proof. (a) From (1) and (5), w = dy/dx , so Y ′
e(x) = We(x), where We(x) is the exact

solution for w in terms of x ; furthermore, dw/dx = −g/u2. Hence, from (6), We(x)

satisfies the initial value problem

dw

dx
= −c p(w), w = b/a at t = 0, (13)

and similarly, Y ′
s(x) = Ws(x), where Ws(x) satisfies

dw

dx
= −c q(w), w = b/a at t = 0, (14)

with p(w) and q(w) as in (7) and (8). Also, p(b/a) = q(b/a) = g/ca2 and

p′(w) = −2
√

1 + w2 < −2 = q ′(w) for w 
= 0.

Using CMVT, it follows that

p(w) > q(w) > 0 for w < b/a. (15)

Assume Xe(w) satisfies X ′
e(w) = −[c p(w)]−1 with Xe(b/a) = 0, and Xs(w) satisfies

X ′
s(w) = −[c q(w)]−1 with Xs(b/a) = 0. From (15), Xe(w) and Xs(w) are decreas-

ing on the domain (−∞, b/a], and so, with respect to this domain, these functions
have inverses. From (13) and (14), it is clear that these inverses are We(x) and Ws(x),
which must also be decreasing on their corresponding domains, [0, x∞) and [0, ∞),
respectively. But (15) implies X ′

s(w) < X ′
e(w) for w < b/a. Thus, by CMVT,

Xs(w) > Xe(w) > 0 for w < b/a. (16)

Let x̂ satisfy 0 < x̂ < x∞, and let ŵ = We(x̂): ŵ < b/a, since We(0) = b/a and
We(x) is decreasing on [0, x∞). Now, Xs(ŵ) > Xe(ŵ), from (16). This implies
that Ws(Xs(ŵ)) < Ws(Xe(ŵ)), since Ws(x) is decreasing on [0, ∞). Consequently,
We(x̂) < Ws(x̂), using properties of inverses and the definition of ŵ. Therefore,
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We(x) < Ws(x) for 0 < x < x∞. But We(x) = Y ′
e(x), Ws(x) = Y ′

s(x), and Ye(0) =
Ys(0) = 0. Hence, using CMVT again, Ye(x) < Ys(x) for 0 < x < x∞.

(b) Expanding (1 − e2cx) in the expression for Ys(x) in (12) produces

Ys(x) = bx

a
+ gx

2a2c
− g

4a2c2

∞∑
n=1

(2cx)n

n! = bx

a
− gx2

2a2
− g

a2

∞∑
n=3

(2c)n−2xn

n! .

(17)

Since Yg(x) = bx/a − gx2/2a2, it follows that Ys(x) < Yg(x) for x > 0.

Let ye(t) be the exact solution for y in terms of t and yg(t) = bt − gt2/2, Galileo’s
solution. A theorem similar to Theorem 1 can be proven for these functions.

Theorem 2. (a) ye(t) < ys(t) for t > 0. (b) ys(t) < yg(t) for 0 < t ≤ 2b/g, b > 0.

Proof. (a) Recall that we(t) and ws(t) satisfy (7) and (8), respectively, subject to w =
b/a at t = 0. This together with (15) shows that we(t) < ws(t) for t > 0, using an
argument analogous to that used in the proof of Theorem 1(a) to infer that We(x) <

Ws(x) for 0 < x < x∞. Thus, q(we(t)) > q(ws(t)) for t > 0, since q(w) is decreasing
on �, and it follows from (15) that p(we(t)) > q(ws(t)) for t > 0. Also, (6) and (7)
imply u = [p(w)]−1/2. Therefore,

ue(t) = [p(we(t))]−1/2 < [q(ws(t))]−1/2 = us(t) for t > 0, (18)

where ue(t) is the exact solution for u in terms of t and us(t) = x ′
s(t), derivable from

(10). But (1) and (5) imply dy/dt = v = uw, and so, using (11) and (18),

y′
e(t) = ue(t)we(t) < us(t)ws(t) = y′

s(t) for t > 0. (19)

Since ye(0) = ys(0) = 0, (19) and CMVT imply ye(t) < ys(t) for t > 0.

(b) Using ys(t), as given in (11), and yg(t) = bt − gt2/2 with b > 0 yields

y′
s(t) − y′

g(t) =
(

b + g

2ac

) 1

act + 1
+ gt

2
− g

2ac
− b = act

act + 1

(
gt

2
− b

)
.

(20)

Thus, y′
s(t) < y′

g(t) for 0 < t < 2b/g. Also, ys(0) = yg(0) = 0. Hence, by CMVT,
ys(t) < yg(t) for 0 < t ≤ 2b/g. Note: yg(t) ≥ 0 if and only if 0 ≤ t ≤ 2b/g.

Some other trajectory approximations will be briefly considered. The Maclaurin
expansion of we(t), like one in [15] of a function equivalent to −w′

e(t), is used here as
a source of such approximations. Repeated differentiation of (7) leads to

we(t) = b

a
− gt

a
− cgsI t2

2a
+ bcg2t3

6asI
+

(
b

a
− ag

cs3
I

)
c2g2t4

24
+ O(t5), (21)

for sufficiently small t , with sI = √
a2 + b2 as in (2). Keeping only terms of degree 2

or less in (21) and following the steps in the derivation of Ys(x) in (12) gives

y ≈ Yw2(x) =
(

b + g

2csI

)
x

a
+ g(1 − e2cxsI /a)

4c2s2
I

. (22)
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This approximation appears in [15]; it reduces to Ys(x) when sI is replaced by a,
and it is expected to be accurate when the t3 term in (21) is small relative to the t2

term, i.e., when t � 3s2
I /|b|g. Ys(x) and Yw2(x) estimate the projectile’s range (i.e.,

the x value at which the projectile returns to its initial height) about equally well, on
average, over a set of test cases for which sT = 40 m/s, sI ∈ {10, 20, 40, 80} m/s, and
launch angle φ ∈ {15◦, 30◦, 45◦, 60◦, 75◦}. However, Ys(x) overestimates the range
in all test cases, in accordance with Theorem 1(a), while Yw2(x) underestimates it.
So a better trajectory approximation seems to be Yav(x) = [Ys(x) + Yw2(x)]/2, which
gives excellent range estimates with errors of less than 1% in all test cases except
those having sI ∈ {40, 80} m/s with φ ∈ {60◦, 75◦}. A higher-order approximation,
not pursued in [15], is found by retaining only terms of degree 3 or less in (21); this
leads to a messy expression, Yw3(x), omitted here but given in [7]. Yw3(x), like Yav(x),
gives more accurate range estimates than both Ys(x) and Yw2(x) in all test cases, but
Yav(x) generally gives the best estimates. More details on test case results for various
approximations are provided in [7]. Figure 2 depicts trajectories Ys(x), Yw2(x), Yw3(x),
Yav(x), and Ye(x) for one test case.

0
40200

40

20

8060

y

x

w2 A w3 S

Figure 2. Trajectories Ys(x), Yw2(x), Yw3(x), Yav(x) (labeled A), and Ye(x) (dashed), for terminal speed
40 m/s and initial speed 40 m/s at launch angle 60◦.

Rewriting (1) in terms of derivatives of y, s, and θ with respect to x and repeatedly
differentiating the result, as in Littlewood [11], generates

Ye(x) = b

a
x − g

2a2
x2 − cgsI

3a3
x3 − cg

2cs2
I − bg/sI

12a4
x4 + O(x5), (23)

for sufficiently small x . Although (23) has some value as a trajectory approximation
(when extended to error O(x7), its range estimates on the test cases are generally a bit
worse, and less consistent, than those of Yav(x)), it is most useful in proofs (as in [11])
and for deducing other results, such as this expansion for the range x :

x = 2a2

g
φ − 8a4c

3g2
φ2 + 40a6c2 + 6a2g2

9g3
φ3 + O(φ4), (24)

for sufficiently small φ, which agrees with Galileo’s range 2a2g−1 tan φ when c =
0. In [7], (24) is derived and shown to be consistent, surprisingly, with expansions
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of x obtained from Ys(x), Yw2(x), Yw3(x), and Yav(x). Ranges calculated from these
approximate trajectories are all correct to exactly O(φ4) as φ → 0, though the test
case results show that some of these range estimates are much better than others.
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