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The Oldest Trig in the Book
Harold P. Boas

Harold P. Boas (boas@tamu.edu) defended his PhD
dissertation on functions of several complex variables the
year that Talley’s Folly (by Lanford Wilson) won a Pulitzer
Prize. He has been a faculty member at Texas A&M
University since the title year of George Orwell’s dystopian
novel. Fifty years ago, he played chess with the future
author of A Game of Thrones. When not teaching and
learning mathematics, he enjoys literature of all genres.

Do you know the value of cos(π/5) out of your head? When I ask students this ques-
tion, responses range from apologetic shrugs to nervous chuckles to blank stares, and
faculty hardly do better.

Mathematics majors and their instructors are supposed to be familiar with the values
of the cosine function at the special angles shown in Table 1. The gap in the table at
angle π/5 stands out like an empty seat in an otherwise full classroom.

Actually, few of my colleagues know all the entries in this table by rote, preferring
instead to catch the non-integer cosine values on the fly by visualizing the triangles
shown in Figure 1. But the angle π/5 occurs in no right triangle having two integer
sides, so does the value of cos(π/5) admit any simple expression?

I do not recall ever encountering this question during my student days, but recently
my attention was drawn to cos(π/5) when an undergraduate who was researching the
history of number theory asked for help understanding an article of Cauchy [3] about
Fermat’s last theorem. A puzzling statement in the paper turned out to be wrong, and
the simplest counterexample involved the fifth roots of −1 in the complex plane, hence
the angle π/5.
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Table 1. The standard values of the cosine function.

Figure 1. Right triangles for determining the cosine of π/3, π/6, and π/4.
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Figure 2. Golden ratio: The small rectangle and the large rectangle are similar.

This special angle not only is a key component of cultural symbols ranging from
the talisman of the ancient Pythagoreans to the flag of the modern African nation of
Togo but also is a crucial element of applications ranging from Ptolemy’s 2nd-century
trigonometric table to Penrose’s 20th-century aperiodic tiling of the plane. Readers of
this journal will have seen in a recent prize-winning article by Travis Kowalski [18]
a diagram from which cos(π/5) can be determined. Table 1 suggests that the value
should be 1/2 times some special number, and that number turns out to be the golden
ratio.

The quotient b/a of two positive real numbers represents the golden ratio if the
numbers a and b are related in such a way that b is the geometric average of a and
a + b. Equivalently,

b

a
= b + a

b
.

Figure 2 shows a standard geometric interpretation of this equation. Nowadays, the
similarity in the figure is interpreted as the initial stage of a fractal construction.

Representing b/a by x yields that x = 1 + x−1, or x2 = x + 1, so the quadratic
formula implies that the golden ratio equals (1 + √

5 )/2. A common notation for the
golden ratio is the Greek letter φ, but I reserve that letter for a different use later. In
summary, here is the missing entry in Table 1:

cos
(π

5

)
= 1 + √

5

4
= 1

2
× (golden ratio). (�)

This formula might be the oldest significant mathematical fact missing from the
standard American curriculum. My goal in this article is to popularize the result, which
is a legacy of some of the most influential mathematicians of all time. I begin by
exhibiting three proofs that first-year undergraduates can readily understand—or even
discover, given suitable hints. Then I set the problem into a broader mathematical and
historical framework.

Double your fun
The first proof surprisingly sneaks up on the angle π/5 by using only angle doubling.
When θ is an arbitrary angle, two applications of the double-angle formula reveal that

cos(4θ) = 2 cos2(2θ) − 1 = 2(2 cos2(θ) − 1)2 − 1

= 8 cos4(θ) − 8 cos2(θ) + 1.
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Accordingly, if θ is an angle for which cos(4θ) happens to equal cos(θ), then cos(θ)

will be a root of the polynomial 8x4 − 8x2 − x + 1.
Certainly cos(4θ) = cos(θ) when 4θ and θ represent the same angle: namely, when

θ = 0 and also when θ = ±2π/3. Since cos(0) = 1 and cos(±2π/3) = −1/2, the
indicated polynomial has both x − 1 and 2x + 1 as factors. Division of polynomials
now produces the following identity:

8x4 − 8x2 − x + 1 = (x − 1)(2x + 1)(4x2 + 2x − 1).

The roots of the quadratic factor 4x2 + 2x − 1 must be the values of the cosine arising
from the other cases in which cos(4θ) = cos(θ): namely, when 4θ and −θ represent
the same angle, that is, when θ = ±2π/5 and also when θ = ±4π/5. Since the angle
2π/5 lies in the first quadrant (where the cosine has positive values), and 4π/5 lies
in the second quadrant (where the cosine has negative values), applying the quadratic
formula to the polynomial 4x2 + 2x − 1 shows that

cos

(
2π

5

)
= −1 + √

5

4
and cos

(
4π

5

)
= −1 − √

5

4
.

Angles that sum to π have cosines that are negatives of each other, so
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5

4
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.

This method yields not only the cosine of π/5 but also the cosines of the integer
multiples of π/5.

Imagine that
A more direct evaluation of cos(π/5) is available through exploiting the complex ex-
ponential function. When θ is an arbitrary angle,

2 cos(θ) = eiθ + e−iθ , so

4 cos2(θ) = e2iθ + 2 + e−2iθ .

Substitute π/5 for θ , subtract 1 plus the first line from the second line, rearrange the
terms, and use that eiπ = −1:

4 cos2
(π

5

)
− 2 cos

(π

5

)
− 1 = 1 − eiπ/5 + e2πi/5 + e−2πi/5 − e−iπ/5

= 1 − eiπ/5 + e2πi/5 − e3πi/5 + e4πi/5.

The final expression vanishes, for eiπ/5 is a root of the polynomial 1 + z5, which fac-
tors as (1 + z)(1 − z + z2 − z3 + z4). The upshot is that cos(π/5) is a root of the
polynomial 4x2 − 2x − 1. The quadratic formula yields the required positive value
(1 + √

5 )/4.
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Figure 3. A pentagonal construction.

Hang five
A geometric argument is yet another way to arrive at the value of cos(π/5). Figure 1
shows that the cosine can be obtained for angles π/3 and π/4 by bisecting an equilat-
eral triangle and a square, so a natural idea is next to consider a pentagon.

Since the angles in an n-gon sum to (n − 2)π , each angle in a regular pentagon
equals 3π/5, as indicated in the left-hand part of Figure 3. The diagonal BE cuts off an
isosceles triangle, and since the angle at vertex A is 3π/5, each of the other two angles
in triangle ABE equals π/5. Dropping a perpendicular from vertex A to the midpoint
of line BE reveals that cos(π/5) equals half the ratio of the length d of a diagonal
to the length s of a side of the pentagon. What remains to show is that this ratio d/s

equals the golden ratio.
The right-hand part of Figure 3 shows a second diagonal AC crossing the first at

a point F . By symmetry, the angle at A in triangle ABC is π/5. Since the full angle
at A is 3π/5, the angle at A in triangle AEF is 2π/5. The three angles in triangle
AEF sum to π , so the angle at F in this triangle is 2π/5 as well. Thus the triangle
AEF is isosceles, whence the segment EF has the same length as the segment AE:
namely, length s. Moreover, the isosceles triangle BAF is similar to the triangle BEA,
so the length ratio BE/AB equals the ratio AB/BF. Since AB = s = EF, an equivalent
statement is that

d

s
= BE

EF
= EF

BF
.

In other words, the diagonal BE is divided at F according to the golden ratio, and this
ratio equals d/s, as claimed.

Take the next step
Can Table 1 be extended with a nice expression for the cosine of π/7, the next angle in
the sequence? I challenge the reader to adapt either of the preceding analytic methods
to show that the numbers cos(π/7), cos(3π/7), and cos(5π/7) are the roots of the
cubic polynomial 8x3 − 4x2 − 4x + 1. The formula for solutions of cubic equations
then implies that

cos
(π

7

)
= 1

6

(
1 + 3

√
7

2

(
−1 + 3i

√
3
)

+ 3

√
7

2

(
−1 − 3i

√
3
))

,
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where the cube roots of complex numbers on the right-hand side are chosen to be
the roots closest to the positive part of the real axis. This representation for cos(π/7)

certainly is not a simple or memorable one!
But the regular heptagon (or 7-gon) cannot be constructed with straightedge and

compass, so might π/7 be an exceptional, unlucky choice of angle? To the contrary, I
claim that integer multiples of π/4, π/5, and π/6 are the only simple angles that have
simple cosines. (Multiples of π/2 and π/3 are automatically included, since they are
multiples of π/6.) What I mean by “simple” is that the angle θ is a rational multiple of
π radians—equivalently, a rational number of degrees—and that cos(θ) is a root of a
quadratic polynomial having integer coefficients. For example, the polynomial 2x2 − 1
has cos(π/4) as a root.

To verify the claim, start with the easy special case of integer values of the cosine.
The realization of cos(θ) as the abscissa of a point on the unit circle with angle θ

shows that 1, 0, and −1 are the only integers in the range of the cosine function, and
these values are realized for angles equivalent to 0, ±π/2, and π .

What about non-integer rational values? The rational numbers ±1/2 are taken by
the cosine at angles ±π/3 and ±2π/3. Many authors have observed that no additional
rational values can be obtained as cos(mπ/n) when m and n are natural numbers,
a canonical reference being Ivan Niven’s Carus Monograph [25]. J. M. H. Olmsted
published a wholly elementary proof [26] that uses nothing more than multiple-angle
formulas for the cosine.

Here is a shorter but more sophisticated argument. Suppose cos(θ) equals a rational
number r that is not an integer. Since

eiθ + e−iθ = 2 cos(θ) = 2r,

multiplying by eiθ implies that

e2iθ − 2reiθ + 1 = 0.

Accordingly, the complex number eiθ and its complex conjugate e−iθ are the two (dis-
tinct) roots of the quadratic polynomial z2 − 2rz + 1. If additionally the angle θ is
a rational multiple of π , then there is some natural number n larger than 2 such that
eiθ and e−iθ are roots of the polynomial zn − 1. This polynomial can be factored as
a product (z2 − 2rz + 1)p(z) for some polynomial p with rational coefficients. Since
the polynomial zn − 1 has integer coefficients and leading coefficient 1, a standard al-
gebraic proposition known as Gauss’s lemma implies that the factors z2 − 2rz + 1 and
p(z) have integer coefficients. In particular, the rational number 2r is an integer. Since
|r| ≤ 1, and r is not an integer, the only possible values that r can have are ±1/2.

Finally, admit irrational numbers into the mix. The values of cos(θ) that are
simple—according to my definition—are real numbers of the form r1 + r2

√
m, where

r1 and r2 are rational numbers and m is a positive integer. The same reasoning as in
the preceding paragraph shows that

(eiθ + e−iθ − 2r1)
2 = 4mr2

2 ,

and multiplying by e2iθ reveals that eiθ satisfies a fourth-degree polynomial equation
with rational coefficients. If θ is a rational multiple of π , then θ can be written in the
form 2πk/n for coprime natural numbers k and n. In other words, eiθ is a primitive
nth root of unity. I now use a result of Gauss about cyclotomic polynomials: namely,
the minimal polynomial over the rational numbers of a primitive nth root of unity has
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n 2 3 4 5 6 7 8 9 10 11 12 ≥ 13
φ(n) 1 2 2 4 2 6 4 6 4 10 4 ≥ 6

Table 2. Values of the totient function.

degree equal to the total number of primitive nth roots of unity. This quantity is Euler’s
totient function φ(n), the number of positive integers up to n that are coprime to n. The
preceding discussion can be summarized as saying that φ(n) ≤ 4.

This inequality is easily seen to hold for only a few special values of n. Indeed,
φ(p) = p − 1 when p is a prime number; more generally φ(pj ) = pj−1(p − 1) when
p is prime and j is a positive integer; and φ has the multiplicative property that
φ(ab) = φ(a)φ(b) when a and b are coprime. Using these properties, you should
be able to verify the values of φ shown in Table 2, which reveals that if φ(n) ≤ 4, then
2π/n is a multiple of π/4 or π/5 or π/6.

I have proved my claim, but there is more to the story. D. H. Lehmer [19] showed
that if k and n are coprime natural numbers, then cos(2πk/n) satisfies a polynomial
equation with rational coefficients, and when n > 2, the minimal degree of such an
equation is φ(n)/2.

Reach for the stars
The preceding topics have a long history. I now address the background, a fascinating
part of mathematical culture.

All that glisters. Five centuries ago, the sun revolved around the earth, physicians
believed in the four humors, and moveable type was cutting-edge printing technology.
Would a time traveler from those days recognize any aspect of today’s society?

One luminary who would is the Renaissance scholar Luca Pacioli, a Franciscan friar
remembered as the father of accounting due to the exposition of double-entry book-
keeping contained in his mathematics textbook [28]. Perhaps he would be surprised
by the durability of the principles of keeping ledgers that he learned from Venetian
merchants. Pacioli devoted another treatise [27] to what he called the “divine propor-
tion” (the golden ratio). This opus is remembered not so much for the scientific content
as for the drawings of polyhedra contributed by Pacioli’s roommate and star mathe-
matics pupil, Leonardo da Vinci. The letter M used as a logo for many years by the
Metropolitan Museum of Art in New York City derives from an alphabet constructed
geometrically in Pacioli’s book (Figure 4).

Since Pacioli is not a household name, you might think that I am exaggerating the
significance of his contributions. Indeed, some writers have faulted him for alleged
plagiarism [13, p. 150]. Yet his influence is undeniable. A century after the publication
of Pacioli’s book, the words “divine proportion” were standard terminology for the
imperial mathematician Johannes Kepler, a creative genius who is a star of the first
magnitude on everybody’s chart.

Some mathematics groupies maintain that the golden ratio is ubiquitous in art and
in nature, but professional mathematicians who have studied the matter regard this
notion as a childish fantasy [5, 13, 24]. For the past century and a half, starting with
the pioneering work of Gustav Theodor Fechner [6], experimental psychologists have
examined whether the golden rectangle shown in Figure 2 is a maximally aesthet-
ically pleasing shape, the current consensus being negative [20, pp. 178–179], [31,
Section 6.5].

14 © THE MATHEMATICAL ASSOCIATION OF AMERICA



Figure 4. The letter M designed in Divina proportione.

The numerical value of (1 + √
5 )/2 (about 1.618) can be approximated crudely by

3/2 and more closely by 8/5, a rational number that has the appealing representations

1 + 36

60
and 1 + 1

2
+ 1

10

in Babylonian sexagesimal style and in Egyptian-fraction style. More accurate rational
approximations are available by taking the quotient of any two consecutive Fibonacci
numbers, say 144/89. The simple irrational numbers

√
2 and

√
3 roughly approximate

the golden ratio, and the transcendental numbers π/2 and (4/π)2 do better. The golden
ratio is also close to 1.609, the conversion factor from miles to kilometers. If you
encounter in the wild a number in the vicinity of 1.6, why should you believe that the
true value is the golden ratio rather than one of the competing approximations?

There is no documentary evidence that the golden ratio was a design element in
classical Greek architecture. Nonetheless, the concept of “the extreme and mean ratio”
(as the golden ratio is named in Definition 3 of Book VI of Euclid’s Elements) was
familiar to the followers of Pythagoras, according to Sir Thomas Heath [12, p. 403].
In Book XIII of the Elements, Euclid demonstrates the key step in the geometric proof
of equation (�): namely that the ratio of the diagonal of a regular pentagon to the side
is equal to the golden ratio. Consequently, there is ample justification for saying that
the value of cos(π/5) is implicit in the mathematics of ancient Greece, even though
the concept of the cosine function did not yet exist.

Some writers have gone further in attributing modern ideas to the predecessors of
Euclid, observing that Figure 5 implicitly contains a proof that the golden ratio is an
irrational number. By considering similar triangles in the figure, you should be able to
see that if the diagonal and the side of the pentagon were commensurable quantities—
that is, integer multiples of some common unit of measurement—then the diagonal
and the side of the smaller pentagon in the center of the figure would be multiples of
the very same unit. Iterating this argument until the central pentagon shrinks to a size
smaller than the supposed common unit of measurement results in a contradiction.

This geometric argument for the irrationality of the golden ratio uses no knowledge
about factorization of integers, hence may be viewed as conceptually simpler than the
standard proof of the irrationality of

√
2. If the second-century rhetorician Lucian’s
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Figure 5. A pentagram inscribed in a regular pentagon.

Figure 6. Flag of Togo.

“Slip of the tongue” essay is to be believed, the pentagram had special significance to
the followers of Pythagoras. Accordingly, some authors have proposed [4, 9, 34] that
the diagonal of a regular pentagon of side 1, not the diagonal of a square of side 1,
could have been the first number discovered to be irrational. This charming conjecture
is a heterodox opinion [13], [16, pp. 29–31] that is historically undecidable—neither
verifiable nor falsifiable. There is, however, compelling evidence [7] that everything
you think you know about the discovery of irrational numbers is wrong.

The five-pointed star is an iconic emblem found everywhere from the shield of Sir
Gawain and the badge of the Texas Rangers to the Hollywood Walk of Fame. The
star appears on many world flags, including that of the United States of America, and
on 23 of the 50 individual state flags. The flag of the West African republic of Togo
(Figure 6), created in 1960 by artist Paul Ahyi, not only displays a five-pointed star
but supposedly was designed to have aspect ratio equal to the golden ratio, a feature
apparently not implemented in practice. (For that matter, commercial United States
flags do not conform to the government specification [4 U. S. C. Section 1] of a 10
by 19 shape.)

General joy of the whole table. In fields ranging from astronomy to aeronau-
tics and from surveying to navigation, “computer” used to be not a programmable
device but a job title [10] (a job often held by women [14, 32, 33]). Tables of nu-
merical values of special functions once were an indispensable aid to calculation.
Modern digital electronics have made such tables largely obsolete, but there is con-
tinuing interest in finding closed-form expressions of values of functions at particular
arguments [18].
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Figure 7. The chord of angle θ .

Special values of functions were more widely known in the 19th century than now
in the 21st century. William Hopkins, in an exposition of trigonometry “published
under the superintendence of the Society for the Diffusion of Useful Knowledge,”
presents a table [15, pp. 38–39] of exact values of the sine function (equivalently the
cosine, which is the sine of the complementary angle) at all multiples of 3◦ in the first
quadrant. His method is first to invoke multiple-angle formulas to evaluate the trigono-
metric functions at angle 2π/5 (equivalently 72◦) and hence at the complementary 18◦
angle. The half-angle formula applied to the standard 30◦ angle gives the functions
at 15◦. Identities for trigonometric functions at the difference of two angles yield the
values at 3◦ from those for 18◦ and 15◦. Multiple-angle formulas then generate exact
values of the trigonometric functions at all multiples of 3◦. What distinguishes these
angles is that they have integer values in degrees and are constructible by straightedge
and compass [8].

This method of starting with angle 72◦ and working down to 3◦ goes back at least to
Claudius Ptolemy’s magnum opus on mathematical astronomy, the Almagest (second
century ce), available in a definitive English translation by G. J. Toomer [29]. The
details differ, of course, since Greek trigonometry is based not on the sine or the cosine
but on the chord of the angle (Figure 7), which equals twice the sine of half the angle
inscribed in a unit circle. And Ptolemy is interested not in exact values but in numerical
approximations useful for calculation. Moreover, Ptolemy’s decisive technical device
is not the difference formula for sines and cosines but rather his eponymous theorem
about a quadrilateral inscribed in a circle: the product of the diagonals equals the sum
of the products of opposite sides (Figure 8).

The first trigonometric table for which there is convincing historical evidence is that
of Hipparchus in the second century bce, but his work is lost, supplanted by Ptolemy’s
masterpiece, “dominant to an extent and for a length of time which is unsurpassed
by any scientific work except Euclid’s Elements” [29, p. 2]. The ancient Babylonian
clay tablet known as Plimpton 322 has been in the news recently, touted as the oldest
trigonometric table [22], but this speculative interpretation is well known [17, 23] and
has previously been judged doubtful [1, 2, 30].

Since the geometry of angle π/5 has been a part of mathematical lore for such a
long time, everybody was astonished in the 1970s by Sir Roger Penrose’s remarkable
discovery that the two rhombuses in Figure 9 can be used to tile the plane (Figure 10),
but never in a periodic way [11, Section 10.3]. Such tilings have local (but not global)
fivefold symmetry. Suddenly mathematicians perceived such symmetries lurking ev-
erywhere, even in Islamic art contemporaneous with Fibonacci [21]. Then in the 1980s,
Dan Shechtman revolutionized materials science by observing an “impossible” five-
fold symmetry in a mixture of aluminum and manganese. He subsequently received
the 2011 Nobel Prize in Chemistry for his discovery of so-called quasicrystals, a topic
of continuing interest both to applied scientists and to pure mathematicians.
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Figure 8. Ptolemy’s theorem: AC · BD = AB · CD + AD · BC.

Figure 9. Penrose rhombs.

Figure 10. Tiled floor in the lobby of the Mitchell Physics Building at Texas A&M University
in College Station.
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Go, and sin( ) no more
The past and the present of cos(π/5) are intertwined with such prominent personages
as Pythagoras, Ptolemy, Pacioli, and Penrose. There is yet more to the plot, for every
pithy answer contains the seed of a new problem. I pose the following puzzle for you
to ponder.

I have demonstrated that multiples of π/4, π/5, and π/6 are the only simple angles
with simple cosines. And you learned in trigonometry that the sine function and the
cosine function are parallel objects: both functions arise from projecting points of the
unit circle onto a line, and the graphs of the two functions are translates of each other.

Yet equation (�) implies, via the basic identity that sin2(θ) + cos2(θ) = 1, the
following evaluation:

sin
(π

5

)
= 1

2

√
5 − √

5

2
.

Consequently, in contrast to the number cos(π/5), the value sin(π/5) satisfies not a
second-degree equation with integer coefficients but instead a fourth-degree equation.

How do you explain that the cosine function is a simpler function than the sine?

Summary. This historical exposition discusses the theory and the applications of the cosine
of 36 degrees.
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