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CERTAIN MATHEMATICAL ACHIEVEMENTS OF JAMES GREGORY 

MAX DEHN, Illinois Institute of Technology 
E. D. HELLINGER, Northwestern University 

For a long time the light of James Gregory did not shine as brightly as did 
that of John Wallis, Isaac Barrow and Isaac Newton, the other three great 
British mathematicians of the seventeenth century. Only recently, through the 
endeavours of several Scottish mathematicians, especially E. T. Whittaker, 
G. A. Gibson and H. W. Turnbull, Gregory's genius is revealed and fills with 
admiration all those interested in the development of modern mathematics. 

The" James Gregory Tercentenary Memorial Volume," edited by H. W. Turn
bull [1], contains Gregory's momentous scientific correspondence, mostly with 
J. Collins. An extremely important supplement is the large number of Gregory's 
hitherto unpublished notes, recording his mathematical ideas and calculations. 
These notes were found in a collection of documents in the University of St. 
Andrews Library, written on the blank spaces of letters to Gregory. This ma
terial affords the possibility of studying his achievements and ideas. 

In this paper we shall discuss Gregory's expansions of general and particular 
functions into series. In addition, we shall exhibit the ideas which are set forth 
in his first mathematical publication "Vera circuli et hyperbolae quadratura" [2 ]. 
These ideas are concerned, to some extent, with the associated problem of con
structing by certain limiting processes the functions which measure the areas 
of circles and conics. 

1. The "Taylor's series". In a letter of February 15, 1671 to J. Collins (see 
"Memorial" [1], pp. 170 ff.) Gregory gives the power series for seven important 
functions, each with 5 or 6 terms. These functions are, if for the sake of brevity 
we may use modern notations, 

arc tan x, tan x, sec x, log sec x, log tan ( ; + :) , 

arc sec ( V2 e•"), 2 arc tan (tanh ; ) . 

He mentions without further explanation that he had some knowledge of New
ton's "universal method." Hereby, he refers to some series which Newton had 
discovered and which Collins had but recently communicated to him. 

We may surmise that he obtained the arc tangent series in a way analogous 
to that by which three years earlier N. Mercator [3] had found the series for 
log(1 +x). He may have considered arc tan x as the area under the curve 
y = (1 +x2)-1, transformed (1 +x2)- 1 by formal division into a power series and 
finally integrated this infinite sum. However, there is no possibility of obtaining 
the other series in a similar way. 

On the blank space of a letter to Gregory, dated January 29, 1671, Turnbull 
found a group of computations about just these seven functions [4]. The com-
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parison of these computations with Gregory's expansions indicates the way of 
his thoughts. First, they include almost without exception, as many of the suc
cessive derivatives of the functions, as would be needed in finding the 5 or 6 
numerical coefficients of the series by successive differentiation. Second, all co
efficients in Gregory's series are correct with the exception of a single coefficient 
in both the expansions for tan x and for log sec x. (The second error is a conse
quence of the first since he obviously obtained the log sec series by integrating 
the tangent series.) Finally, all derivatives in Gregory's notes are correct with 
the exception of a single numerical error in the derivatives of tan x, which was 
probably due to miscopying one number. However, using this erroneous value 
one finds exactly the erroneous coefficients in the series for tan x and log sec x. 
From these two facts, Turnbull argues conclusively that Gregory used the tables 
of the derivatives for the construction of his power series. 

We see two possibilities for such a construction. On the one hand, we may 
imagine that Gregory applied in each particular case something like the "method 
of undetermined coefficients" together with successive differentiation. That he 
mentions "Newtons universal method" immediately before giving his series may 
be considered as supporting this assumption. In fact, if we look upon the whole 
of Newton's work we are justified in assuming that Gregory thought of this 
combined method as "Newtons universal method," even though the idea had 
been sketched as early as 1637 by Descartes in his "geometrie," and had since 
been applied by many other mathematicians. Nevertheless, Gregory's remark 
must be considered as a mere guess based upon the few results from Newton's 
still unpublished investigations which Collins had communicated to him with 
no hint about Newton's method. 

On the other hand, we may suppose that Gregory could have applied the 
same process for an unspecified function and could have obtained the general 
expression for the nth coefficient of the expansion. Thus he would have antici
pated Taylor's classical expansion by forty-four years. Neither the letters nor 
the other material, so far as published, substantiate the latter possibility. From 
all these facts, we may conclude that Gregory possessed a method for finding the 
Taylor expansion of any particular function, but we cannot affirm that he 
possessed Taylor's formula for an unspecified function. 

It may be interesting that the second man, C. Maclaurin, whose name is 
closely associated with this series, deduced it seventy years later, in his "Treatise 
of Fluctions" (1742) by a reasoning similar to that of Gregory. Of course heap
plied it at once to an unspecified function. He quotes Taylor's book for the 
formula but could not have known Gregory's discovery then buried in the corre
spondence. 

2. The interpolation formula. For the independent discovery by Gregory of 
a famous interpolation formula, full evidence is given in a letter of his pub
lished long ago. Nevertheless, nobody seems to have realized this fact until 
E.· T. Whittaker brought it to general notice. In the letter to Collins [5] of 
November 23, 1670 Gregory stated explicitly a formula which interpolates for a 
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function y =j(x) when its values at equidistant points 0, c, 2c, 3c, · · · are given. 
This formula is identical with the famous formula 

x x(x- c) x(x- c)(x- 2c) 
(1) j(x) = j(O) +- t::.j(C) + · !::.1(0) + . t::.~j(O) + · • · , 

c c·2c c·2c·3c 

which Newton made known some years later [6] and which mostly bears his 
name. It is not essential that Gregory assumes here f(O) =0. Further, we 
may note that, of course, he did not have for the differences the notation 
il.f(O), il.2f(O), il.3f(O), · · · . This came into use much later under the influence 
of Leibniz's symbolism. He takes single letters d, j, h, · · · for these values, 
carefully defined by forming the sequences of the 1st, 2nd, 3rd, · · · differences. 
Newton uses almost the same notation as Gregory. 

In the correspondence on this· formula between Collins and Gregory [7 j, 
there is mentioned the procedure which Briggs had used in extending his table 
of logarithms to subintervals. Briggs took differences, generalizing the older 
method of linear interpolation. His procedure can be considered in some way 
as the predecessor of the interpolation formula. However, Briggs does not state 
such a formula nor does he give any motivation of this procedure. Gregory's 
formula was given in answer to a question raised by Collins for such a motiva
tion. 

Of course, Gregory also states his formula without a proper proof, but it is 
obvious that he could and did verify the formula for polynomials. The same is 
true for Newton's first publications, although later, in the "methodus differ
entialis," he sketches a way to derive the formula. It is interesting that the 
interpolation of tables is only one aim of Gregory's statement; he emphasizes 
strongly its use for the problem of approximate quadrature of curves and gives 
various formulas in this connection. Incidentally Newton [8] makes the same 
application of the interpolation formula. 

The infinite process which is involved in this interpolation formula implies a 
serious mathematical difficulty which even its discoverers may have felt semi
consciously. The polynomial P,.(x) of the nth degree which is given by the first 
n+l terms of the formula (1) takes on the values of f(x) at the equidistant 
points 0, c, 2c, · · · , nc, and is determined by this property. This, obviously, 
is the essential fact which was discovered and communicated by Gregory and 
Newton. Yet they tacitly assumed that for other unspecified values of x the 
successive polynomials P ,.(x) yield an approximation to f(x) which can be im
proved by increasing n. Apparently, they thought only of such values of x which 
are located between 0, c, · · · , nc, that is to say, they considered only the proper 
problem of interpolation. Here the fact of the steadily improved approximation 
looks rather evident although a precise formvlation and an exact proof was not 
within the range of these early developments. Things are different if one turns 
to the problem of extrapolation, considering values x outside the interval of the 
multiples of c. The published material gives no evidence that Gregory used his 
formula for extrapolation. And Newton in the "Philosophiae Naturalis Prin-
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cipia" [6] applies the interpolation formula not in order to find the place of a 
comet at any time beyond the range of the observations, but only for intermedi
ate moments. 

It is important to realize this situation since the way from the interpolation 
formula to the Taylor series goes through a sort of extrapolation. Assuming c 
infinitely small, one concentrates 0, c, 2c, · · · in an arbitrarily small neighbor
hood of a fixed value and one seeks an expression for f(x) at another fixed value 
at a finite distance. This can be done formally by applying the usual symbols of 
the difference and differential calculus. One has only to replace, corresponding 
to this limiting process, the nth difference quotientd"y/dx" in Newton's formula 
by the nth derivative d"y/dx". But in doing so one leaps over a very serious 
difficulty, using the symbols without regard to their original meaning. In fact, 
the higher derivatives are defined originally by iteration of the differentiation 
process (limit of first difference quotient) and their connection with the higher 
difference quotients is not trivial. And still more difficult for a critical mathe
matician is the whole limiting process from the interpolation formula to the 
infinite series. Perhaps such difficulties make us understand why Gregory did 
not state any connection between his two great results and why Newton, so 
far as we know, never formulated the Taylor series. 

The first to dare to leap over these gaps was Brook Taylor in 1715 [9]. 
He could do so, since he obviously knew not only Newton's methods but also the 
concepts and notations introduced in the mean time by Leibniz. He did not use 
the symbols of Leibniz, but, adapting them to Newton's language, he developed 
a notation of his own which may, of course, appear a little awkward to us. He 
applied this symbolism without being influenced by the intrinsic difficulties men
tioned above. Thus he came automatically from the interpolation formula to his 
general series by this purely formal procedure which later on was often per
formed unscrupulously with the help of the suggestive notation of Leibniz. 

3. The binomial series. In an enclosure [10] with the letter to Collins of 
November 23, 1670, Gregory deals with the problem of finding the "number" of 
a given logarithm x; that is to say, if we denote the base by 1 +d, of finding 
y = (1 +d)'". For the sake of brevity, we again use modern notations without 
changing anything else. Gregory gives the solution as follows: 

(1) 
x(x- 1) x(x- 1)(x- 2) 

( 1 + tf)" = 1 + xd + d2 + d3 + · · · , 
1·2 1·2·3 

which is of course the binomial series. The comparison of Gregory's formula and 
notation with the statement of the interpolation theorem in the principal part of 
the same letter [5] shows clearly that he found his result by applying the theo
rem to the function f(x) = (1 +d)'" using the known values at x = 0, 1, 2, · · 
Indeed, since the first difference of this function turns out to be 

(2) tlf(x) = J(x + 1) - f(x) = (1 + d)"H- (1 +d)"= d·f(x), 
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the values of its successive differences at x =0 become 

J(O) = 1, 6.J(O) = d, 6.2j(O) = d2, 6.1j(O) = d1, ••• 

Thus, the interpolation formula 2, (1) yields immediately the binomial series (1). 
The correspondence of Gregory and Collins gives full evidence that this dis

covery of Gregory was entirely independent of Newton's investigations in the 
binomial theory. Gregory knew at this time only a single one of Newton's re
sults, namely the series for the "zone of the circle," i.e. the series for the function 
I:(R2 -x2)11 2dx. Collins had communicated the mere statement of the latter 
to him seven months previously [11]. In fact, Newton had found this series by 
integrating term by term the expansion of the binomial (R2 -x2)1' 2• Having 
Collins' communication, Gregory tried hard but without success to prove the 
result directly. Obviously, his discovery of the general binomial theorem was 
in no way influenced by this knowledge and he did not guess any connection. 
Afterwards, he recognized suddenly that Newton's series was a simple conse
quence of his own theorem and, in a letter of December 19 [12 ], complains much 
of "his own dullness," not to have noticed the fact before. Besides, Newton's 
binomial theorem did not become generally known before 1676, when, about ten 
years after he had found it, he communicated it to Oldenburg in the two famous 
letters [ 13] (June 6 and October 4). 

It is interesting to compare the way in which Newton had discovered his 
theorem, as he describes it in the second of these letters, with Gregory's de
duction. We mention only the most important points, simplifying the notation 
as before. Newton computes first the powers (1 +d)" for the lowest integers 
n = 2, 3, 4, · · · , and discusses how to find directly the numerical coefficients of 
d, d 2, d3, • • • in each of these expressions. He then makes the important remark 
that these coefficients in the expansion of (1 +d)" can be generated by multiplica
tion of the numbers (n-0)/1, (n-1)/2, (n-2)/3, · · ·,that is to say, that the 
coefficient of dm in the expansion of (1 +d)n is equal to 

n(n - 1) · • · (n - m + 1) 
(3) 

1·2· · · · ·m 
Of course, equivalent multiplicative relations for actually the same integers had 
been discovered a few years before by Pascal who defines them as elements of 
his "arithmetical triangle," without reference to the binomials. 

From this statement Newton proceeds in an extremely audacious way. He 
got the idea from the procedure by which J. Wallis had developed his famous 
product formula for 1r by considering the successive integrals J:(1-x2)"'2dx for 
n = 0, 1, 2, · · · . (As a matter of fact, Newton starts in that letter with the con
sideration of these integrals instead of with the binomial itself.) He applies the 
same formula (3) also for the intermediate values n = 1/2, 3/2, 5/2, · · · in 
order to obtain expressions for (1 +d)" with these fractional values of the expo
nent, although he now has to write infinite series instead of finite sums. Further 
generalizations enable him to state the theorem for arbitrary values of the ex
ponent. 
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To be sure, neither Gregory's nor Newton's deduction is an exact proof in 
the modern sense. In some respects, Gregory's way may seem to us more satisfac
tory: he deduces the result from a general theorem, the interpolation formula, 
and from a characteristic property of the function (1 +d)", namely the difference 
equation {2). On the other hand, Newton makes this almost adventurous gen
eralization of a finite algebraic identity, deduced for integral exponents only, 
into an infinite series for fractional exponents. Nevertheless, there is some in
ternal connection between the two procedures. In his investigation, Newton 
considers the powers of a binomial as a function of the exponent as does Gregory, 
and not as a function of the second term d of the binomial. Thus, the procedures 
are not so different in their essence as they are in their execution. If one compares 
them with the usual modern proofs of the binomial theorem, one may remark 
that the latter are based on the consideration of (1 +d)" as a function of d and 
that they use the successive derivatives with respect to d and the Taylor series 
instead of the successive differences with respect to x and the interpolation 
formula. 

Newton realized the necessity of showing the way in which his consideration 
may be completed by a proper proof. As an example, he verifies by direct multi
plication that the square of his series for (1 +d)1' 2 is equal to 1 +d. Neither 
Gregory nor Newton tried to prove the convergence of the series. Such a proof 
was not, at this time, believed to be necessary; but certainly they had the feeling 
that these infinite sums determined definite numbers. 

In this connection, it is interesting to find in a somewhat later letter of 
Gregory, dated April9, 1672 [14] an early attempt to estimate the remainder of 
an infinite series by comparing it with the geometrical series. Here, he approxi
mates the logarithmic series x +x3 /3 +x6 /5 +x1 /7 + · · · by expressions such as 

x3 x6 9x1 
x+-+-+----

3 5 7 · 9 - 7 · 7 x2 

and emphasizes that the analogous expressions formed by using more terms of 
the original series will give a better approximation. Obviously, this estimate is 
obtained by comparison with the geometric series 

xa x6 x7( 7x2 (7x2)2 ) x+-+-+- 1+-+ - + · ·· . 
3 5 7 9 9 

Thus, we see here the first step on the way which, more than a century later, led 
Cauchy to his convergence tests. 

4. Gregory's "Vera Quadratura." Gregory's "Vera Circuli et Hyperbolae 
Quadratura" [2]. a small volume, contains extremely interesting and original 
ideas which are, to be sure, a little remote from the mathematics of his time. 
Even if his mathematical technique was not always sufficient to get a complete 
solution of the problems he saw, even if he sometimes makes incomplete deduc
tions and wrong conclusions, the investigations show an immense creative power. 
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He follows in some way the classical procedure of Archimedes, but reveals the 
algebraic content of the method. Besides, instead of calculating the perimeter 
of the circle as Archimedes did, ·he operates on areas. This enables him to deal 
simultaneously with the sectors of the circle, ellipse and hyperbola. 

-=---=~~~------~~T 

Let M be the center of a conic A CB, let AT and BT be the tangent lines at A 
and B, respectively, and let the straight line MT intersect AB at D and the 
conic at C. Gregory concludes first from fundamental properties of the conics 
the relations [ 15]: 

(1) AD= DB, MC2 = MD·MT. 

Now he draws the tangent line at C which intersects AT at U and BT at V, and 
compares the following pairs of polygonal areas which are inscribed in or circum
scri-bed about the sector MA CB: on the one hand he compares the inscribed tri
angle i 0 =MAB with the circumscribed quadrangle Io=MATB, on the other 
hand the inscribed polygon i1 = MA CB with the circumscribed polygon 
l 1 =MA UCVB. The polygon i 1 is composed of two equal triangles MAC and 
MCB; the polygon / 1 of two equal quadrangles MA UC and MCVB. Then, 
elementary properties of the conics, especially the relations (1), enable him to 
deduce easily two equations between these four areas as follows: 

2i1lo 
[1=---· 

i1 + Io 

Now, operating on the triangles MAC and MCB, and on the quadrangles 
MA UC and MCVB in the same way as he had operated on the triangles MAB 
and the quadrangle MATE, he gets four triangles of equal areas i2/4, inscribed 
in the sector MA CB, and four quadrangles of equal areas /2/4 circumscribed 
about the same sector. Obviously, he obtains: 

2i2l1 
/2=---· 

i2 + /1 

Repeating the same operation n times, he constructs for each successive 
n = 3, 4, · · · an inscribed polygonal area i,., composed of 2" equal triangles, 



156 CERTAIN MATHEMATICAL ACHIEVEMENTS OF JAMES GREGORY (March, 

and a circumscribed one I,., composed of 2" equal quadrangles. The successive 
areas are given by: 

(2) 
2i,.+1I" 2 i,.I" 

In+l = ----
i,.+l + I,. i,. + v'T,J;. 

(n = 0, 1, 2, · · · ). 

Geometrically it is obvious that the area S of the sector MA CB lies between 
each pair i,., I,., and that, if n increases indefinitely, these areas will approach S 
as closely as one desires, one sequence increasing from below, the other decreas
ing from above. But Gregory is not satisfied with this visual evidence. He recog
nizes in the successive construction of the i,., I,. a new arithmetic operation 
which yields the value S, and therefore he feels a necessity to prove what we 
call the convergence of the limiting processes 

(3) lim i,. = lim I,. = S. ,...... ,.__.. 

In fact, with that high degree of exactness which we find in the classical Greek 
mathematics, he first shows that 

I I nH - i,.+l I < ! I In - i,. I 
and then concludes that I I,. -i,. I becomes smaller than any given number if n 
is sufficiently large. 

To realize the mathematical importance of Gregory's method we may state 
that, for the circle and ellipse where I 0 >i0 , the area Scan be expressed as 
follows: 

(4) ~ ly;=-i~ 
S = Io ---. arc tan --.- · 

Io- ~o ~o 

For the circle, the first factor is simply !MA 2, the second the angle 8=BMA. 
For the hyperbola where I 0 <i0, we have only to interchange I 0 and io and to 
replace the arc tangent function by the inverse of the hyperbolic tangent func
tion. If we use imaginary numbers, we recognize that we have the same analytic 
function, since tanh ix =i tan x. But Gregory has discovered, without applying 
imaginary numbers, that the same analytical process-the approximation by the 
formulas (2), (3)-yields the area of the hyperbola as well as the area of the 
ellipse. In other words, he has found, for the first time in history, the analytical 
connection between the quadrature of sectors of the ellipse (or of the circle) and 
the quadrature of sectors of the hyperbola. 

The history of these quadratures is interesting. We may assume that astro
nomical practice originally suggested the introduction of the arc of a circle as 
independent variable and the coordinates of the point on the circumference as 
dependent variables, that is to say, the introduction of the circular functions 
sine, cosine, and so on. This development may be connected with the fact that 
Archimedes investigated primarily the rectification of the circle instead of the 
quadrature. But the rectification of the general conics is an entirely different 
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and much more difficult problem. In considering the area of the circular sectors 
Gregory was able to find one single analytical process for the quadrature of all 
conics. 

Now, it has been known since the middle of the 17th century that the quad
rature of the hyperbola is connected with the logarithmic function. Therefore, 
it was obvious to Gregory himself that he had found one analytical process for 
getting from algebraic expressions to logarithmic functions as well as to inverses 
of the circular functions. 

This discovery is generally ascribed to Euler who, some seventy years later, 
arrived at the connection between the exponential function and the circular 
functions by using formal operations in the field of complex numbers. It is 
doubtful whether Euler considered hyperbolic functions as analogous to circular 
functions and whether he used, in this respect, the analytical analogy between 
the processes of quadrature of circular and hyperbolic sectors. 

The comparison of Euler's and Gregory's achievements may enhance our ad
miration for Gregory's genius. Indeed, it is not easy to connect in the field of 
real numbers the two integrals 

J yl- x2 dx and f vl + x2 dx, or 

As we have seen, this was achieved by Gregory. 

f dx 
--- and 
1 + x2 f dx 

1- x2 

In his "appendicula ad veram circuli et hyperbolae quadraturam" of 1668 
[16] Gregory gives an array of linear combinations of the first i,. and I,. with 
definite numerical coefficients which yield much better approximations to the 
area S than do i,. and I,. themselves. Gregory was extremely offended that 
Huygens did not acknowledge his work to be an essential improvement over his 
older methods. Therefore he tried to make obvious the strength of the new 
theory by stating numerous new and surprising results without revealing how 
he had found them. Turnbull [ 17] has verified that, for the circle, one gets ex
actly Gregory's approximations if one first expresses i,. and I,. in terms of 
trigonometric functions of the angle 8, then expands these expressions in power 
series in 8, and finally forms such linear combinations of them which begin with 
the term () and contain afterwards as many vanishing coefficients as possible. 
Analogous considerations are valid for the hyperbola. If Gregory operated in 
this manner he must have known the first terms of the power series for trigo
nometric and hyperbolic functions as early as 1668. Indeed, it is possible that 
he got this knowledge without using differentiation, but the published material 
does not seem to contain anything to corroborate this. 

There are two other points in Gregory's speculations which particularly re
veal the range of his mathematical ideas with respect to the actual later devel
opment of our science. First, the recurrent construction of the areas i,., I,. is 
with him only one example of a very general, new analytic process which he 
coordinates as the "sixth" operation along with the five traditional operations 
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(addition, subtraction, multiplication, division, and extraction of roots). In the 
introduction, he proudly states "ut haec nostra inventio addat arithmeticae 
aliam operationem et geometriae aliam rationis speciem, ante incognitam orbi 
geometrico." This operation is, as a matter of fact, our modern limiting process. 
Clearly, his idea is, if we formulate it in modern language without changing the 
notions, to investigate two sequences of quantities a 1a2, • • • and b1, b2, • • • , 

defined by the recurrent equations 

(5) a,.+l = q,(a,., b,.), b,.+l = x(a,., b,.) (n = 1, 2, 3, · · · ). 

He uses the word "convergent" for these sequences, very probably for the first 
time in history, if for each n 

0 < b,.+l - a,.+l < b,. - a,.. 

Of course, this definition does not conform completely to our precise notion of 
convergence; but in applying his notion he proves in most cases the correct and 
sufficient inequality 

0 < b,.+l - a,.+l < p(b,. - a,.) 

where P. < 1 is independent of n. (In his original problem, he has, as seen previ
ously, p=j.) Then he concludes that the "last convergent terms" of these
quences a,. and b,. are equal, and he calls them terminatio of the sequences. In 
his original problem this terminatio is the area S. 

From his further examples we may mention the following ones: 

(6) 

and 

(7) 

a,.+l = a,. + a(b,. - a,.), 

2a,.b,. 
a,.+l = --

a,.+ b,. 

b,.+l = b,. - f3(b,. - a,.) 

a,.+ b,. 

Here he succeeds in finding the terminatio by an ingenious and simple idea: he 
determines an invariant expression F(a,., b,.) such that 

(8) 

then, the terminatio twill satisfy the equation 

(9) 

which gives the value tin terms of a1 and b1. For the examples (6), (7) he can 
state immediately the invariant expressions F(a,., b,.) =f3a,.+ab,. and F(a,., b,.) 
=a,.·b,., respectively, and he finds as the termatio, using (9): 

respectively. 

{Ja1 + ab1 
t=---- and t = "\/ a1b1, 
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One may remark that Gregory investigated in (2) and (7) different com
binations of arithmetical, geometrical and harmonical means. One could imagine 
that he tried to treat other combinations of these means, but that he could not 
find out an algebraic expression or a geometric interpretation. In the following 
century the relation between the arithmetical-geometrical mean and the elliptic 
integrals was discovered by Lagrange, Legendre and Gauss. We know especially 
that Gauss studied these means in his early youth before he had any knowledge 
of the calculus, and that these means, later on, showed him the way to the 
elliptic integrals [18]. We know moreover that Pfaff, the teacher of Gauss, in
vestigated sequences closely related to Gregory's sequence (2) [19 ]. Thus, we 
could guess that we have here an influence of Gregory's work on one of the most 
important theories of modern analysis, but we have no definite evidence of such 
connections. 

The second point may be still more momentous. Gregory attempts to prove 
that the terminatio S of the polygons i,., I,. cannot be expressed by using the 
traditional five "elementary" operations on i 0 and / 0• In the preface he puts par
ticular emphasis on this phenomenon. From his exposition we may suppose that 
he first had tried to "square the circle," i.e. to find such an "elementary" ex
pression for S. But he was critical enough to recognize that the difficulties in 
this search could not be overcome. And realizing that the task of algebra and 
analysis consists as well in solving a problem as in proving, if necessary, the 
"impossibiljty" of a certain solution, he dared to try such a proof, although he 
did not find any pattern for doing it. He emphasizes that since Euclid's classi
fication of the usual irrationalities in his tenth book, nothing of this kind has 
even been attempted. Of course, Leonardo Pisano had shown [20] about 
1200 A.D., that a certain cubic equation cannot be solved by Euclid's irra
tionalities. However, Gregory could not have had any kiwwledge of this in
vestigation since it was not published before the nineteenth century. It is a 
testimony to Gregory's surprising intuition that he mentions further as problems 
impossible in the same sense just these two: to solve the general algebraic equa
tion and to get an nth root by solving quadratic equations. 

To be sure, Gregory does not prove that it is impossible to square the circle, 
although this is in his mind. He approaches only a much easier problem: to 
prove that the area of an arbitrary circular sector S cannot be expressed in 
terms of the areas i 0 and / 0 by the five elementary operations-or, in modern 
language, that the arc tangent function as given by (4) and defined by the limit
ing process (2), (3), is not a combination of such algebraic functions. The 
foundation of his proof is the remark that two sequences (2) yield the same 
terminatio S whether we begin the process with i 0 , 10 or with i1, /1; therefore S 
depends upon io and / 0 in the same way as upon i 1 and 11• To put it in modern 
language, the function satisfies the algebraic functional equation: 

(10) 
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i.e. S(i0 , I o) can be transformed algebraically into itself. He tries to prove that 
the identity (10) is impossible for any function formed only by the five elemen
tary operations. First he removes the irrationality, introducing two suitable 
new variables u, v by the equations 

io = u2(u + v), 

Then (2) shows that 

i1 = uv(u + v), 

and the identity (10) becomes 

Io = v2(u + v). 

(11) S(u2(u + v), v2(u + r)) = S(uv(u + v), 2uv 2). 

Now he states two properties of this identity from which he is going to deduce 
its impossibility for functions S of the above described algebraic type: 1) The 
arguments of Son the left side contain u up to the third power, while those on 
the right side contain u only up to the second power. 2) On the left side, both 
arguments are binomial, while on the right side the second one is only monomial. 

Of course, Gregory is able to prove correctly by this procedure that the 
identity (11) cannot be satisfied by a rational integral functionS of its two argu
ments, and even, with slightly more difficulty, that it cannot be satisfied by any 
rational function. However, we do not believe that the facts he offers are suffi
cient to furnish the proof that Sis not an irrational function built up in using 
extraction of roots. Indeed, the algebraic factor I oviol\/ l 0-i0 of ( 4) satisfies, 
itself, an identity which differs from (10) only by a factor 2 in the left member, 
and Gregory's considerations could be applied equally well to the modified 
identity. The point is that the identity (10), used as basis for his proof implies 
an intrinsic difficulty: it is equivalent to the algebraic relation between tan 8.and 
tan 28 and, moreover, Gregory thinks of it only as valid in the restricted interval 
0<8<j1r. 

Today, we would conclude the transcendental character of tan 8 (and, simul
taneously, of the inverse function arc tangent) immediately from the periodicity 
of that function (tan 8 = tan(8+1r)). Although such a conclusion seems to us ex
tremely simple, it may have been difficult and remote at Gregory's time. 

A modern mathematician will highly admire Gregory's daring attempt of a 
"proof of impossibility" even if Gregory could not attain his aim. He will con
sider it a first step into a new group of mathematical questions which became 
extremely important in the 19th century. However, the contemporary echoes 
of Gregory's undertaking were in no way favorable. First of all, Huygens criti
cized [21] the "Vera Quadratura" in an extremely unfavorable manner. Gregory 
had sent him one of the first copies. He expected his discoveries to be fully ap
preciated by this great mathematician who himself had done very important 
work on the· problem of the quadrature of conics and the circle. But, unfor
tunately, Huygens was apparently angry that those earlier investigations were 
not mentioned. Thus, he put more emphasis on some claims of priority and on 
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some objections against Gregory's deductions than on the importance of 
Gregory's new ideas and results. There is no need to report here on the un
pleasant discussion which arose from this criticism [22]. We mention only the 
single point of importance where Huygens showed a profounder insight. He 
says: even if the area of an arbitrary circular sector cannot be expressed alge
braically in terms of the areas i 0 , I 0 , one can still imagine such an expression to 
be possible for particular sectors, for example, for the whole circle itself. Gregory, 
obviously, had overlooked this possibility in his original publication. In his an
swer he tried to deduce the result for the "particular case" from that for the arbi
trary sector. These endeavors could not but fail; it took more than two centuries 
before mathematics had developed the necessary means to prove the tran
scendency of 'If'. 

5. Conclusion. Surveying the importance of all these discoveries and ideas 
of Gregory, and realizing that the total range of his scientific work is by no 
means covered by our report, one may wonder why this great man did not exert 
more influence on the actual development of mathematics. The reason can be 
found in some unfortunate, almost tragical facts in Gregory's life which 
hampered his activity as well as the effectiveness of his work. After some short 
sojourns in London (1663 and 1668), and several years of inspiring studies in 
Italy (1664-1668), mostly in Padua, he was appointed Professor of Mathematics 
at the Scottish University of St. Andrews. At this old school, still living entirely 
in medieval traditions, the young scholar was rather isolated. There he was the 
only one who knew of the new development of mathematics. He himself 
abounded with new ideas, but there was no possibility to discuss or to teach 
them. Moreover, hardly any literature was available. Only through his corre
spondence with Collins whom he had met in London and who had become his 
close friend, could he learn what the great mathematicians in England and 
abroad were planning and completing. 

Thus, his ideas could not find the response they deserved and he himself did 
not develop them as far as it might have been possible in closer contact with 
mathematicians of equal rank. Still worse consequences may have been involved 
in the lack of appreciation of his first important publication, the Vera Quad
ratura, and especially in the unkind and unjust criticism of Huygens which we 
have mentioned above. 

Apparently, these experiences impressed the proud young Scotchman so 
deeply that he abandoned entirely the trend of ideas he had started so success
fully. We can imagine that otherwise he might have applied his "convergent" 
pairs of sequences, as defined by recurrence formulas, to various problems and 
that he might have brought this important process to greater prominence in the 
early analysis. In fact, he afterwards used the infinite series, probably influenced 
by the reports he got, scantily, on Newton's work. Yet, also here, fate did not 
favor him. For he was not given time and opportunity to complete and publish 
his investigations; and his great merits were darkened by Newton's glory who, 
meanwhile, could finish his work. 
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Besides, Gregory had inaugurated research on differential and integral cal
culus without knowing what his eminent competitors were doing simultaneously 
in this field. He was even the first to publish, as early as 1668, a proof [23] of 
the "fundamental theorem," that the two characteristic problems of the calculus, 
namely, to determine the slopes and to determine the areas, are inverse to one 
another. Also here he met misfortune; immediately afterwards there appeared 
Barrow's great work "lectiones geometricae," which went much farther and won 
all fame. A few years later, Newton's and Leibniz's momentous results on the 
calculus became known and made obsolete the work of all their predecessors. 

Gregory did not live to see this development. He had eventually taken over a 
professorship at the University of Edinburgh, which granted him better working 
opportunities. But only one year later, in the fall of 1675, he suddenly fell ill 
and died in his thirty-seventh year. Most of his discoveries and ideas were 
buried in his letters and notes or lost through his death. 
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THE CLOSURE OF SYSTEMS OF ORTHOGONAL FUNCTIONS 

G. E. ALBERT, Ohio State University 

1. Introduction. A system of functions cpn(x), n =0, 1, 2, · · · is said to be 
orthonormal on the finite interval (a, b) provided that 

f b {0 if n-¢ m, 
<Pn(x)<Pm(x)dx = . 

a 1 lf n = m. 

With any integrable function g(x) there is an associated generalized Fourier 
series 

(1) "' 
g(x)"' L an<Pn(x), 

n-o 
a,. = J 6 

g(x)<P,.(x)dx. 
a 

An orthonormal system is said to be closed in the class H of functions if the 
series (1) associated with an arbitrary function g(x) in H converges in the mean 
to g(x); that is, if 

(2) 

where sn(x) denotes the sum of the first n terms of (1). 
The importance of the concept of closure in teaching courses involving 

orthogonal series is quite generally recognized. Various conditions for the 
validity of the property are known. Unfortunately, the application of those 
conditions to specific orthogonal systems is, even in the simplest cases, some
what abstruse for presentation to a class composed of, say, seniors and first 
year graduate students in physics and engineering. In the second section of this 
paper a new criterion for closure is given which can be applied directly to verify 
the property for a number of classical orthogonal systems. In the third section 
the application of the condition is indicated for the system of Legendre poly
nomials and the system of trigonometric functions. The entire procedure may 
be shown to students having no more preparation than a course in Advanced 
Calculus. 


