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The Scottish mathematician James Gregory published the short book Vera Circuli
et Hyperbolae Quadratura (The True Squaring of the Circle and the Hyperbola) in
1667. He continued the tradition started by Archimedes of using regular polygons to
approximate a circle. Whereas Archimedes used the perimeters of the polygons to
bound the circumference of the circle (to obtain his famous bounds, 223/71 < π <

22/7), Gregory used the areas of the polygons to obtain ever-tightening bounds on
the area of the circle. He proved the following recursive formulas for obtaining these
bounds.

Theorem. Let Ik and Ck denote the areas of regular k-gons inscribed in and circum-
scribed around a given circle. Then I2n is the geometric mean of In and Cn, and C2n is
the harmonic mean of I2n and Cn; that is,

I2n = √
InCn and C2n = 2CnI2n

Cn + I2n

= 2
1

I2n
+ 1

Cn

.

Alsina and Nelsen [1] provide a visual proof of the nearly identical theorem about
the perimeters of inscribed and circumscribed regular polygons. Here, we give a short,
visual proof of the following lemma from which the theorem follows.

Lemma. For all n,

I2n

In

= Cn

I2n

= Cn − C2n

C2n − I2n

.

Proof. Suppose we have a circle of radius r with inscribed and circumscribed regular
n- and 2n-gons. Let a be the length of the apothem of the inscribed n-gon, b be the
radius of the circumscribed n-gon, and c and d be half the side lengths of the inscribed
n-gon and circumscribed 2n-gon, respectively. Then, as we see in Figure 1,

I2n

In

= 2n · 1
2rc

2n · 1
2ac

= r

a
,

Cn

I2n

= 2n · 1
2bc

2n · 1
2rc

= b

r
, and

Cn − C2n

C2n − I2n

= 2n · 1
2 (b − r)d

2n · 1
2 (r − a)d

= b − r

r − a
.
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And, by similar triangles (see Figure 2),

r

a
= b

r
= b − r

r − a
. �

Figure 1 A circle with inscribed and circumscribed regular n- and 2n-gons.

Figure 2 A sector of the circle and sides of the inscribed and circumscribed regular
n-gons.

In fact, Vera Circuli contained more than this result. Gregory proved that for all
n, |C2n − I2n| < 1

2 |Cn − In|, and thus as k → ∞, Ck and Ik converge to the area of
the circle (in fact, Gregory coined the term convergent). So, if the circle has radius 1,
we can use these values to approximate π . For instance, inscribed and circumscribed
squares yield I4 = 2 and C4 = 4. Applying the formulas produces the tighter bounds,
I8 = 2

√
2 = 2.8284 . . . and C8 = 8

√
2 − 8 = 3.3137 . . ., and Table 1 shows the next

several bounds. Moreover, Gregory proved a more general version of this theorem that
applies to ellipses and hyperbolas.

Vera Circuli also contained Gregory’s proof that the ancient Greek problem of
squaring the circle is impossible. In particular, he claimed that the circumference of the
circle cannot be obtained from the radius using addition, subtraction, multiplication,
division, and the extraction of roots.
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n In Cn Cn − In

4 2 4 2

8 2.8284 3.3137 0.4852

16 3.0614 3.1825 0.1211

32 3.1214 3.1517 0.0302

64 3.1365 3.1441 0.0075

128 3.1403 3.1422 0.0018

256 3.1412 3.1417 0.0004

TABLE 1: Bounds for π from inscribed and circumscribed n-gons.

Gregory sent his manuscript to Christian Huygens who was 10 years his senior and
a leading mathematician of the day. Rather than replying to Gregory directly, Huy-
gens published a review of Vera Circuli identifying a flaw in Gregory’s argument and
asserting that some of Gregory’s results had previously appeared his own work. This
review initiated an unpleasant dispute between the two mathematicians.

Although Gregory was correct that it is impossible to square the circle, the mathe-
matical community had to wait over two centuries for a rigorous proof—Lindemann’s
1882 proof that π is transcendental. Despite the flaw in Gregory’s work, twentieth
century mathematicians Max Dehn and E. D. Hellinger wrote, “A modern mathemati-
cian will highly admire Gregory’s daring attempt of a ‘proof of impossibility’ even if
Gregory could not attain his aim.” [2]

The disagreement between Gregory and Huygens reveals more than just the issue of
the correctness of Gregory’s proof and Huygens’s accusation of plagiarism. Huygens
was at heart a mathematical traditionalist—a geometer. Whereas Gregory was one of
the new breed—an algebraist and a pioneer of the new field of calculus. As Scriba
noted, Gregory “was one of the wild young men who wanted to tear down the barriers
of traditional mathematics at almost any price, who wanted to view hitherto unculti-
vated areas. Inspired by hopes for as yet unheard-of results, he freely introduced new
methods while at times he neglected necessary care for details and exactness.” [3]

REFERENCES

[1] Alsina, C., Nelsen, R. B. (2010). Charming Proofs: A Journey Into Elegant Mathematics. Dolciani Mathe-
matical Expositions, Vol. 42. Washington, DC: Mathematical Association of America.

[2] Dehn, M., Hellinger, E. D. (1943). Certain mathematical achievements of James Gregory. Amer. Math.
Monthly. 50: 149–163.

[3] Scriba, C. J. (1983). Gregory’s converging double sequence: A new look at the controversy between Huygens
and Gregory over the “analytical” quadrature of the circle. Hist. Math. 10(3): 274–285.

Summary. We visually demonstrate recursive formulas for areas of certain regular polygons.
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